Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles

Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evapor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-01, Vol.12 (1), p.57
Hauptverfasser: Islam, Md Maruful, Yoshida, Toshiyuki, Fujita, Yasuhisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 57
container_title Coatings (Basel)
container_volume 12
creator Islam, Md Maruful
Yoshida, Toshiyuki
Fujita, Yasuhisa
description Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.
doi_str_mv 10.3390/coatings12010057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621277855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621277855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-677970cb94e98137b33572f43993222402fda226d3df2b914fbd4f199377a7173</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EElXpzmiJOWCfnVw9VqUUJEQZ2oUlchwfpGrjYKdD_z2pyoC45U7vPd0nPcZupbhXyogHF2zftJ9JgpBC5HjBRiDQZIWWcPnnvmaTlLZiGCPVVJoR2yyIvOsTD8Rn-6rxrfM8tHz95ePe7rLHhuiQmpNy7Dxf2qwO3YDi7zE4nxKnEPlHu-Jvtg2djX3jdj7dsCuyu-Qnv3vMNk-L9fw5e10tX-az18xpUH1WIBoUrjLam6lUWCmVI5BWxigA0AKotgBFrWqCykhNVa1JDi6iRYlqzO7Of7sYvg8-9eU2HGI7IEsoQALiNM-HlDinXAwpRU9lF5u9jcdSivLUX_m_P_UDH01jHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621277855</pqid></control><display><type>article</type><title>Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Islam, Md Maruful ; Yoshida, Toshiyuki ; Fujita, Yasuhisa</creator><creatorcontrib>Islam, Md Maruful ; Yoshida, Toshiyuki ; Fujita, Yasuhisa</creatorcontrib><description>Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12010057</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Ambience ; Atmospheres ; Atmospheric effects ; Chemical vapor deposition ; Crystallites ; Diffraction patterns ; Doping ; Doppler effect ; Electric arcs ; Electric fields ; Electrical properties ; Electrical resistivity ; Electrodes ; Gallium ; Glass substrates ; Microscopy ; Morphology ; Nanomaterials ; Nanoparticles ; Optical properties ; Red shift ; Semiconductor devices ; Thermal diffusion ; Thin films ; Transistors ; Wurtzite ; Zinc oxide</subject><ispartof>Coatings (Basel), 2022-01, Vol.12 (1), p.57</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-677970cb94e98137b33572f43993222402fda226d3df2b914fbd4f199377a7173</citedby><cites>FETCH-LOGICAL-c423t-677970cb94e98137b33572f43993222402fda226d3df2b914fbd4f199377a7173</cites><orcidid>0000-0002-6248-6603 ; 0000-0002-4330-7016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Islam, Md Maruful</creatorcontrib><creatorcontrib>Yoshida, Toshiyuki</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><title>Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles</title><title>Coatings (Basel)</title><description>Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.</description><subject>Ambience</subject><subject>Atmospheres</subject><subject>Atmospheric effects</subject><subject>Chemical vapor deposition</subject><subject>Crystallites</subject><subject>Diffraction patterns</subject><subject>Doping</subject><subject>Doppler effect</subject><subject>Electric arcs</subject><subject>Electric fields</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Gallium</subject><subject>Glass substrates</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Red shift</subject><subject>Semiconductor devices</subject><subject>Thermal diffusion</subject><subject>Thin films</subject><subject>Transistors</subject><subject>Wurtzite</subject><subject>Zinc oxide</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkDFPwzAQhS0EElXpzmiJOWCfnVw9VqUUJEQZ2oUlchwfpGrjYKdD_z2pyoC45U7vPd0nPcZupbhXyogHF2zftJ9JgpBC5HjBRiDQZIWWcPnnvmaTlLZiGCPVVJoR2yyIvOsTD8Rn-6rxrfM8tHz95ePe7rLHhuiQmpNy7Dxf2qwO3YDi7zE4nxKnEPlHu-Jvtg2djX3jdj7dsCuyu-Qnv3vMNk-L9fw5e10tX-az18xpUH1WIBoUrjLam6lUWCmVI5BWxigA0AKotgBFrWqCykhNVa1JDi6iRYlqzO7Of7sYvg8-9eU2HGI7IEsoQALiNM-HlDinXAwpRU9lF5u9jcdSivLUX_m_P_UDH01jHA</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Islam, Md Maruful</creator><creator>Yoshida, Toshiyuki</creator><creator>Fujita, Yasuhisa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6248-6603</orcidid><orcidid>https://orcid.org/0000-0002-4330-7016</orcidid></search><sort><creationdate>20220104</creationdate><title>Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles</title><author>Islam, Md Maruful ; Yoshida, Toshiyuki ; Fujita, Yasuhisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-677970cb94e98137b33572f43993222402fda226d3df2b914fbd4f199377a7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambience</topic><topic>Atmospheres</topic><topic>Atmospheric effects</topic><topic>Chemical vapor deposition</topic><topic>Crystallites</topic><topic>Diffraction patterns</topic><topic>Doping</topic><topic>Doppler effect</topic><topic>Electric arcs</topic><topic>Electric fields</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Gallium</topic><topic>Glass substrates</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Red shift</topic><topic>Semiconductor devices</topic><topic>Thermal diffusion</topic><topic>Thin films</topic><topic>Transistors</topic><topic>Wurtzite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Md Maruful</creatorcontrib><creatorcontrib>Yoshida, Toshiyuki</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Md Maruful</au><au>Yoshida, Toshiyuki</au><au>Fujita, Yasuhisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>57</spage><pages>57-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Various annealing atmospheres were employed during our unique thermal-diffusion type Ga-doping process to investigate the surface, structural, optical, and electrical properties of Ga-doped zinc oxide (ZnO) nanoparticle (NP) layers. ZnO NPs were synthesized using an arc-discharge-mediated gas evaporation method, followed by Ga-doping under open-air, N2, O2, wet, and dry air atmospheric conditions at 800 °C to obtain the low resistive spray-coated NP layers. The I–V results revealed that the Ga-doped ZnO NP layer successfully reduced the sheet resistance in the open air (8.0 × 102 Ω/sq) and wet air atmosphere (8.8 × 102 Ω/sq) compared with un-doped ZnO (4.6 × 106 Ω/sq). Humidity plays a key role in the successful improvement of sheet resistance during Ga-doping. X-ray diffraction patterns demonstrated hexagonal wurtzite structures with increased crystallite sizes of 103 nm and 88 nm after doping in open air and wet air atmospheres, respectively. The red-shift of UV intensity indicates successful Ga-doping, and the atmospheric effects were confirmed through the analysis of the defect spectrum. Improved electrical conductivity was also confirmed using the thin-film-transistor-based structure. The current controllability by applying the gate electric-field was also confirmed, indicating the possibility of transistor channel application using the obtained ZnO NP layers.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12010057</doi><orcidid>https://orcid.org/0000-0002-6248-6603</orcidid><orcidid>https://orcid.org/0000-0002-4330-7016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-01, Vol.12 (1), p.57
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2621277855
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Ambience
Atmospheres
Atmospheric effects
Chemical vapor deposition
Crystallites
Diffraction patterns
Doping
Doppler effect
Electric arcs
Electric fields
Electrical properties
Electrical resistivity
Electrodes
Gallium
Glass substrates
Microscopy
Morphology
Nanomaterials
Nanoparticles
Optical properties
Red shift
Semiconductor devices
Thermal diffusion
Thin films
Transistors
Wurtzite
Zinc oxide
title Effects of Ambience on Thermal-Diffusion Type Ga-doping Process for ZnO Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Ambience%20on%20Thermal-Diffusion%20Type%20Ga-doping%20Process%20for%20ZnO%20Nanoparticles&rft.jtitle=Coatings%20(Basel)&rft.au=Islam,%20Md%20Maruful&rft.date=2022-01-04&rft.volume=12&rft.issue=1&rft.spage=57&rft.pages=57-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12010057&rft_dat=%3Cproquest_cross%3E2621277855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621277855&rft_id=info:pmid/&rfr_iscdi=true