Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses

Creep is a common important physical phenomenon in rubber material, which induces the instability of geometrical dimension and deteriorates the mechanical performances. The present work develops an optimal design approach of a commercial rubber isolator based on creep analysis. First and foremost, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-01, Vol.236 (1), p.30-42
Hauptverfasser: Leng, Dingxin, Yang, Yi, Li, Demin, Ma, Yong, Liu, Guijie, Li, Zhixiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 30
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Leng, Dingxin
Yang, Yi
Li, Demin
Ma, Yong
Liu, Guijie
Li, Zhixiong
description Creep is a common important physical phenomenon in rubber material, which induces the instability of geometrical dimension and deteriorates the mechanical performances. The present work develops an optimal design approach of a commercial rubber isolator based on creep analysis. First and foremost, a nonlinear creep constitutive model of rubber material is established, which can capture the hyper-elastic and time-dependent creep behaviors. Complete mechanical and creep tests of rubber materials are conducted, and material parameters are identified according to the experimental data. Then, the parametric finite element model of a rubber isolator is established, with which the time-dependent creep analysis based on the proposed creep constitutive model is conducted. The accuracy of the numerical creep analysis is validated at material level and structural component level. For engineering application, a sensitivity analysis and optimization design for creep-resistance of the rubber isolator is developed by combing finite element simulation and optimization method. The results show that creep-resistance characteristics of the optimal rubber isolator is largely improved, which provides a long-term stable behavior in vibration attenuation. The proposed method may provide an efficient tool for predicting the creep performance and optimal analysis of other commercial rubber-base products.
doi_str_mv 10.1177/09544062211017164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621189080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062211017164</sage_id><sourcerecordid>2621189080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-a9a118270d3fc60bceb94943f49a68e1c4f45256bce02ab69b928b632d4b05a3</originalsourceid><addsrcrecordid>eNp1UD1rwzAQFaWFpml_QDdBZ7eSLMvWWEK_IJAlWwdzks_BwbFcnTPk31fBhQ6lt9zx7r3H3WPsXopHKcvySdhCa2GUklLIUhp9wRZKaJkpW-WXbHHeZ2fCNbsh2otUyhQL9rkZp-4APW-Qut3AQ8uB-3A4YPRdguPROYy8o9DDFCJ3QNjwMHAfEUcOQzNPWUx6mmDwmEDoT4R0y65a6AnvfvqSbV9ftqv3bL15-1g9rzOvjJ4ysCBlpUrR5K03wnl0Vludt9qCqVB63epCFSYthAJnrLOqciZXjXaigHzJHmbbMYavI9JU78MxphuoViblUVlRicSSM8vHQBSxrceYHo-nWor6HGH9J8KkeZw1BDv8df1f8A3PIHCd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621189080</pqid></control><display><type>article</type><title>Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses</title><source>SAGE Complete</source><creator>Leng, Dingxin ; Yang, Yi ; Li, Demin ; Ma, Yong ; Liu, Guijie ; Li, Zhixiong</creator><creatorcontrib>Leng, Dingxin ; Yang, Yi ; Li, Demin ; Ma, Yong ; Liu, Guijie ; Li, Zhixiong</creatorcontrib><description>Creep is a common important physical phenomenon in rubber material, which induces the instability of geometrical dimension and deteriorates the mechanical performances. The present work develops an optimal design approach of a commercial rubber isolator based on creep analysis. First and foremost, a nonlinear creep constitutive model of rubber material is established, which can capture the hyper-elastic and time-dependent creep behaviors. Complete mechanical and creep tests of rubber materials are conducted, and material parameters are identified according to the experimental data. Then, the parametric finite element model of a rubber isolator is established, with which the time-dependent creep analysis based on the proposed creep constitutive model is conducted. The accuracy of the numerical creep analysis is validated at material level and structural component level. For engineering application, a sensitivity analysis and optimization design for creep-resistance of the rubber isolator is developed by combing finite element simulation and optimization method. The results show that creep-resistance characteristics of the optimal rubber isolator is largely improved, which provides a long-term stable behavior in vibration attenuation. The proposed method may provide an efficient tool for predicting the creep performance and optimal analysis of other commercial rubber-base products.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062211017164</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Attenuation ; Constitutive models ; Creep analysis ; Creep strength ; Creep tests ; Design optimization ; Finite element method ; Isolators ; Mathematical models ; Parameter identification ; Performance prediction ; Rubber ; Sensitivity analysis ; Time dependence</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-01, Vol.236 (1), p.30-42</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-a9a118270d3fc60bceb94943f49a68e1c4f45256bce02ab69b928b632d4b05a3</cites><orcidid>0000-0002-3353-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062211017164$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062211017164$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Leng, Dingxin</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Li, Demin</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Liu, Guijie</creatorcontrib><creatorcontrib>Li, Zhixiong</creatorcontrib><title>Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Creep is a common important physical phenomenon in rubber material, which induces the instability of geometrical dimension and deteriorates the mechanical performances. The present work develops an optimal design approach of a commercial rubber isolator based on creep analysis. First and foremost, a nonlinear creep constitutive model of rubber material is established, which can capture the hyper-elastic and time-dependent creep behaviors. Complete mechanical and creep tests of rubber materials are conducted, and material parameters are identified according to the experimental data. Then, the parametric finite element model of a rubber isolator is established, with which the time-dependent creep analysis based on the proposed creep constitutive model is conducted. The accuracy of the numerical creep analysis is validated at material level and structural component level. For engineering application, a sensitivity analysis and optimization design for creep-resistance of the rubber isolator is developed by combing finite element simulation and optimization method. The results show that creep-resistance characteristics of the optimal rubber isolator is largely improved, which provides a long-term stable behavior in vibration attenuation. The proposed method may provide an efficient tool for predicting the creep performance and optimal analysis of other commercial rubber-base products.</description><subject>Attenuation</subject><subject>Constitutive models</subject><subject>Creep analysis</subject><subject>Creep strength</subject><subject>Creep tests</subject><subject>Design optimization</subject><subject>Finite element method</subject><subject>Isolators</subject><subject>Mathematical models</subject><subject>Parameter identification</subject><subject>Performance prediction</subject><subject>Rubber</subject><subject>Sensitivity analysis</subject><subject>Time dependence</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UD1rwzAQFaWFpml_QDdBZ7eSLMvWWEK_IJAlWwdzks_BwbFcnTPk31fBhQ6lt9zx7r3H3WPsXopHKcvySdhCa2GUklLIUhp9wRZKaJkpW-WXbHHeZ2fCNbsh2otUyhQL9rkZp-4APW-Qut3AQ8uB-3A4YPRdguPROYy8o9DDFCJ3QNjwMHAfEUcOQzNPWUx6mmDwmEDoT4R0y65a6AnvfvqSbV9ftqv3bL15-1g9rzOvjJ4ysCBlpUrR5K03wnl0Vludt9qCqVB63epCFSYthAJnrLOqciZXjXaigHzJHmbbMYavI9JU78MxphuoViblUVlRicSSM8vHQBSxrceYHo-nWor6HGH9J8KkeZw1BDv8df1f8A3PIHCd</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Leng, Dingxin</creator><creator>Yang, Yi</creator><creator>Li, Demin</creator><creator>Ma, Yong</creator><creator>Liu, Guijie</creator><creator>Li, Zhixiong</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3353-117X</orcidid></search><sort><creationdate>202201</creationdate><title>Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses</title><author>Leng, Dingxin ; Yang, Yi ; Li, Demin ; Ma, Yong ; Liu, Guijie ; Li, Zhixiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-a9a118270d3fc60bceb94943f49a68e1c4f45256bce02ab69b928b632d4b05a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attenuation</topic><topic>Constitutive models</topic><topic>Creep analysis</topic><topic>Creep strength</topic><topic>Creep tests</topic><topic>Design optimization</topic><topic>Finite element method</topic><topic>Isolators</topic><topic>Mathematical models</topic><topic>Parameter identification</topic><topic>Performance prediction</topic><topic>Rubber</topic><topic>Sensitivity analysis</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Dingxin</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Li, Demin</creatorcontrib><creatorcontrib>Ma, Yong</creatorcontrib><creatorcontrib>Liu, Guijie</creatorcontrib><creatorcontrib>Li, Zhixiong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leng, Dingxin</au><au>Yang, Yi</au><au>Li, Demin</au><au>Ma, Yong</au><au>Liu, Guijie</au><au>Li, Zhixiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-01</date><risdate>2022</risdate><volume>236</volume><issue>1</issue><spage>30</spage><epage>42</epage><pages>30-42</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Creep is a common important physical phenomenon in rubber material, which induces the instability of geometrical dimension and deteriorates the mechanical performances. The present work develops an optimal design approach of a commercial rubber isolator based on creep analysis. First and foremost, a nonlinear creep constitutive model of rubber material is established, which can capture the hyper-elastic and time-dependent creep behaviors. Complete mechanical and creep tests of rubber materials are conducted, and material parameters are identified according to the experimental data. Then, the parametric finite element model of a rubber isolator is established, with which the time-dependent creep analysis based on the proposed creep constitutive model is conducted. The accuracy of the numerical creep analysis is validated at material level and structural component level. For engineering application, a sensitivity analysis and optimization design for creep-resistance of the rubber isolator is developed by combing finite element simulation and optimization method. The results show that creep-resistance characteristics of the optimal rubber isolator is largely improved, which provides a long-term stable behavior in vibration attenuation. The proposed method may provide an efficient tool for predicting the creep performance and optimal analysis of other commercial rubber-base products.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062211017164</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3353-117X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-01, Vol.236 (1), p.30-42
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2621189080
source SAGE Complete
subjects Attenuation
Constitutive models
Creep analysis
Creep strength
Creep tests
Design optimization
Finite element method
Isolators
Mathematical models
Parameter identification
Performance prediction
Rubber
Sensitivity analysis
Time dependence
title Optimal design of a commercial rubber isolator based on creep and creep-resistance analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20design%20of%20a%20commercial%20rubber%20isolator%20based%20on%20creep%20and%20creep-resistance%20analyses&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Leng,%20Dingxin&rft.date=2022-01&rft.volume=236&rft.issue=1&rft.spage=30&rft.epage=42&rft.pages=30-42&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062211017164&rft_dat=%3Cproquest_cross%3E2621189080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621189080&rft_id=info:pmid/&rft_sage_id=10.1177_09544062211017164&rfr_iscdi=true