Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies

This manuscript demonstrates the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a newly designed cobalt (III) complex, [Co (dpa)(dpa‐H+)(N3)2]Cl2 (1) [dpa = 2,2′‐dipyridylamine] under an aerobic condition. The crystal structure analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied organometallic chemistry 2022-01, Vol.36 (1), p.n/a
Hauptverfasser: Mahato, Rajani Kanta, Das, Soumik, Joshi, Mayank, Choudhury, Angshuman Roy, Misra, Anirban, Biswas, Bhaskar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Applied organometallic chemistry
container_volume 36
creator Mahato, Rajani Kanta
Das, Soumik
Joshi, Mayank
Choudhury, Angshuman Roy
Misra, Anirban
Biswas, Bhaskar
description This manuscript demonstrates the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a newly designed cobalt (III) complex, [Co (dpa)(dpa‐H+)(N3)2]Cl2 (1) [dpa = 2,2′‐dipyridylamine] under an aerobic condition. The crystal structure analysis reveals that the cobalt (III) center adopts an octahedral geometry, and the complex forms a beautiful supramolecular framework through noncovalent interactions. The cobalt (III) catalyst turns out to be a promising catalyst for the oxidative coupling of o‐phenylenediamine (OPD) in oxygen‐saturated methanol with an excellent turnover number, kcat = 7.85 × 103 h−1. Spectrophotometric, electrochemical, mass spectrometry, and computational analysis ensure that the course of catalysis undergoes through a catalyst‐substrate complexation, facilitating the development of cobalt‐iminobenzoquinone species in the solution. The computational calculations employing the density functional theory (DFT) throw a light to the mechanistic insights of the phenazine oxidase mimics. ETS‐NOCV (extended transition state‐natural orbitals for chemical valence) plots of the reactive intermediates portray the coordination‐driven depletion of electron density from the nitrogens of OPD to cobalt center leading to the enhancement of electrophilic character on para‐positioned C‐atoms with respect to N‐atoms of OPD, therby catalyzing the nucleophilic attack by second OPD to produce the oxidation product, 2,3‐diaminophenazine (DAP). Interestingly, we are able to isolate the oxidation product of the OPD oxidation reaction as a hydrated chloride salt, DAPH+Cl− ·3H2O (2). The crystal engineering perspectives of 2 attribute the intriguing fate of the secondary chlorides for the stabilization of the oxidation product in crystalline phase. This work envisions the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a cobalt (III)‐dipyridyl amine complex under an ambient condition with successful isolation of the OPD oxidation product in single‐crystalline phase as a hydrated phenazine chloride salt.
doi_str_mv 10.1002/aoc.6483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621139158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621139158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-906a31aec2410a91b4f59e1aaec47e47846d9a4c0850d09971f712d9202842b3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqUg8QiWuBSpKbbj_JhbqfipVKkHeo-2jiNcJXWwHWg4ceTIM_IkJC1XTivtfLPaGYQuKZlQQtgNGDmJeRoeoQElQgQkCcUxGhAWpwGLSXSKzpzbEEJETPkAfd1pU-lKS4dNgesXtYUPvVXY7HQOTmGQXr9p3_YqYGnWUHo8ms_n1z-f37muW6vztoSq90hT1aXa3eLnWklvjZOm1nKMnbeN9I2Fcoxhm--5xoPXZgtlpza5Vu4cnRRQOnXxN4do9XC_mj0Fi-XjfDZdBJKJMAwEiSGkoCTjlICga15EQlHoNjxRPEl5nAvgkqQRybv8CS0SynLBCEs5W4dDdHU4W1vz2ijns41pbPeHy1jMKA0FjdKOGh0o2aVwVhVZbXUFts0oyfqas67mrK-5Q4MD-q5L1f7LZdPlbM__AnNXgJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621139158</pqid></control><display><type>article</type><title>Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mahato, Rajani Kanta ; Das, Soumik ; Joshi, Mayank ; Choudhury, Angshuman Roy ; Misra, Anirban ; Biswas, Bhaskar</creator><creatorcontrib>Mahato, Rajani Kanta ; Das, Soumik ; Joshi, Mayank ; Choudhury, Angshuman Roy ; Misra, Anirban ; Biswas, Bhaskar</creatorcontrib><description>This manuscript demonstrates the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a newly designed cobalt (III) complex, [Co (dpa)(dpa‐H+)(N3)2]Cl2 (1) [dpa = 2,2′‐dipyridylamine] under an aerobic condition. The crystal structure analysis reveals that the cobalt (III) center adopts an octahedral geometry, and the complex forms a beautiful supramolecular framework through noncovalent interactions. The cobalt (III) catalyst turns out to be a promising catalyst for the oxidative coupling of o‐phenylenediamine (OPD) in oxygen‐saturated methanol with an excellent turnover number, kcat = 7.85 × 103 h−1. Spectrophotometric, electrochemical, mass spectrometry, and computational analysis ensure that the course of catalysis undergoes through a catalyst‐substrate complexation, facilitating the development of cobalt‐iminobenzoquinone species in the solution. The computational calculations employing the density functional theory (DFT) throw a light to the mechanistic insights of the phenazine oxidase mimics. ETS‐NOCV (extended transition state‐natural orbitals for chemical valence) plots of the reactive intermediates portray the coordination‐driven depletion of electron density from the nitrogens of OPD to cobalt center leading to the enhancement of electrophilic character on para‐positioned C‐atoms with respect to N‐atoms of OPD, therby catalyzing the nucleophilic attack by second OPD to produce the oxidation product, 2,3‐diaminophenazine (DAP). Interestingly, we are able to isolate the oxidation product of the OPD oxidation reaction as a hydrated chloride salt, DAPH+Cl− ·3H2O (2). The crystal engineering perspectives of 2 attribute the intriguing fate of the secondary chlorides for the stabilization of the oxidation product in crystalline phase. This work envisions the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a cobalt (III)‐dipyridyl amine complex under an ambient condition with successful isolation of the OPD oxidation product in single‐crystalline phase as a hydrated phenazine chloride salt.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.6483</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chemistry ; Chlorides ; Cobalt ; cobalt (III) complex ; crystal engineering ; Crystal structure ; Density functional theory ; Depletion ; Electron density ; Mass spectrometry ; Oxidase ; Oxidation ; phenazine oxidase mimics ; Phenylenediamine ; Spectrophotometry ; Structural analysis ; Substrates ; Supramolecular frameworks ; X‐ray crystallography</subject><ispartof>Applied organometallic chemistry, 2022-01, Vol.36 (1), p.n/a</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-906a31aec2410a91b4f59e1aaec47e47846d9a4c0850d09971f712d9202842b3</citedby><cites>FETCH-LOGICAL-c2933-906a31aec2410a91b4f59e1aaec47e47846d9a4c0850d09971f712d9202842b3</cites><orcidid>0000-0003-2211-8985 ; 0000-0002-4018-0451 ; 0000-0003-2463-4967 ; 0000-0003-0765-2979 ; 0000-0002-9525-1886 ; 0000-0002-5447-9729</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.6483$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.6483$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Mahato, Rajani Kanta</creatorcontrib><creatorcontrib>Das, Soumik</creatorcontrib><creatorcontrib>Joshi, Mayank</creatorcontrib><creatorcontrib>Choudhury, Angshuman Roy</creatorcontrib><creatorcontrib>Misra, Anirban</creatorcontrib><creatorcontrib>Biswas, Bhaskar</creatorcontrib><title>Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies</title><title>Applied organometallic chemistry</title><description>This manuscript demonstrates the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a newly designed cobalt (III) complex, [Co (dpa)(dpa‐H+)(N3)2]Cl2 (1) [dpa = 2,2′‐dipyridylamine] under an aerobic condition. The crystal structure analysis reveals that the cobalt (III) center adopts an octahedral geometry, and the complex forms a beautiful supramolecular framework through noncovalent interactions. The cobalt (III) catalyst turns out to be a promising catalyst for the oxidative coupling of o‐phenylenediamine (OPD) in oxygen‐saturated methanol with an excellent turnover number, kcat = 7.85 × 103 h−1. Spectrophotometric, electrochemical, mass spectrometry, and computational analysis ensure that the course of catalysis undergoes through a catalyst‐substrate complexation, facilitating the development of cobalt‐iminobenzoquinone species in the solution. The computational calculations employing the density functional theory (DFT) throw a light to the mechanistic insights of the phenazine oxidase mimics. ETS‐NOCV (extended transition state‐natural orbitals for chemical valence) plots of the reactive intermediates portray the coordination‐driven depletion of electron density from the nitrogens of OPD to cobalt center leading to the enhancement of electrophilic character on para‐positioned C‐atoms with respect to N‐atoms of OPD, therby catalyzing the nucleophilic attack by second OPD to produce the oxidation product, 2,3‐diaminophenazine (DAP). Interestingly, we are able to isolate the oxidation product of the OPD oxidation reaction as a hydrated chloride salt, DAPH+Cl− ·3H2O (2). The crystal engineering perspectives of 2 attribute the intriguing fate of the secondary chlorides for the stabilization of the oxidation product in crystalline phase. This work envisions the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a cobalt (III)‐dipyridyl amine complex under an ambient condition with successful isolation of the OPD oxidation product in single‐crystalline phase as a hydrated phenazine chloride salt.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Cobalt</subject><subject>cobalt (III) complex</subject><subject>crystal engineering</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Depletion</subject><subject>Electron density</subject><subject>Mass spectrometry</subject><subject>Oxidase</subject><subject>Oxidation</subject><subject>phenazine oxidase mimics</subject><subject>Phenylenediamine</subject><subject>Spectrophotometry</subject><subject>Structural analysis</subject><subject>Substrates</subject><subject>Supramolecular frameworks</subject><subject>X‐ray crystallography</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqUg8QiWuBSpKbbj_JhbqfipVKkHeo-2jiNcJXWwHWg4ceTIM_IkJC1XTivtfLPaGYQuKZlQQtgNGDmJeRoeoQElQgQkCcUxGhAWpwGLSXSKzpzbEEJETPkAfd1pU-lKS4dNgesXtYUPvVXY7HQOTmGQXr9p3_YqYGnWUHo8ms_n1z-f37muW6vztoSq90hT1aXa3eLnWklvjZOm1nKMnbeN9I2Fcoxhm--5xoPXZgtlpza5Vu4cnRRQOnXxN4do9XC_mj0Fi-XjfDZdBJKJMAwEiSGkoCTjlICga15EQlHoNjxRPEl5nAvgkqQRybv8CS0SynLBCEs5W4dDdHU4W1vz2ijns41pbPeHy1jMKA0FjdKOGh0o2aVwVhVZbXUFts0oyfqas67mrK-5Q4MD-q5L1f7LZdPlbM__AnNXgJI</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mahato, Rajani Kanta</creator><creator>Das, Soumik</creator><creator>Joshi, Mayank</creator><creator>Choudhury, Angshuman Roy</creator><creator>Misra, Anirban</creator><creator>Biswas, Bhaskar</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2211-8985</orcidid><orcidid>https://orcid.org/0000-0002-4018-0451</orcidid><orcidid>https://orcid.org/0000-0003-2463-4967</orcidid><orcidid>https://orcid.org/0000-0003-0765-2979</orcidid><orcidid>https://orcid.org/0000-0002-9525-1886</orcidid><orcidid>https://orcid.org/0000-0002-5447-9729</orcidid></search><sort><creationdate>202201</creationdate><title>Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies</title><author>Mahato, Rajani Kanta ; Das, Soumik ; Joshi, Mayank ; Choudhury, Angshuman Roy ; Misra, Anirban ; Biswas, Bhaskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-906a31aec2410a91b4f59e1aaec47e47846d9a4c0850d09971f712d9202842b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Cobalt</topic><topic>cobalt (III) complex</topic><topic>crystal engineering</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Depletion</topic><topic>Electron density</topic><topic>Mass spectrometry</topic><topic>Oxidase</topic><topic>Oxidation</topic><topic>phenazine oxidase mimics</topic><topic>Phenylenediamine</topic><topic>Spectrophotometry</topic><topic>Structural analysis</topic><topic>Substrates</topic><topic>Supramolecular frameworks</topic><topic>X‐ray crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahato, Rajani Kanta</creatorcontrib><creatorcontrib>Das, Soumik</creatorcontrib><creatorcontrib>Joshi, Mayank</creatorcontrib><creatorcontrib>Choudhury, Angshuman Roy</creatorcontrib><creatorcontrib>Misra, Anirban</creatorcontrib><creatorcontrib>Biswas, Bhaskar</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahato, Rajani Kanta</au><au>Das, Soumik</au><au>Joshi, Mayank</au><au>Choudhury, Angshuman Roy</au><au>Misra, Anirban</au><au>Biswas, Bhaskar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies</atitle><jtitle>Applied organometallic chemistry</jtitle><date>2022-01</date><risdate>2022</risdate><volume>36</volume><issue>1</issue><epage>n/a</epage><issn>0268-2605</issn><eissn>1099-0739</eissn><abstract>This manuscript demonstrates the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a newly designed cobalt (III) complex, [Co (dpa)(dpa‐H+)(N3)2]Cl2 (1) [dpa = 2,2′‐dipyridylamine] under an aerobic condition. The crystal structure analysis reveals that the cobalt (III) center adopts an octahedral geometry, and the complex forms a beautiful supramolecular framework through noncovalent interactions. The cobalt (III) catalyst turns out to be a promising catalyst for the oxidative coupling of o‐phenylenediamine (OPD) in oxygen‐saturated methanol with an excellent turnover number, kcat = 7.85 × 103 h−1. Spectrophotometric, electrochemical, mass spectrometry, and computational analysis ensure that the course of catalysis undergoes through a catalyst‐substrate complexation, facilitating the development of cobalt‐iminobenzoquinone species in the solution. The computational calculations employing the density functional theory (DFT) throw a light to the mechanistic insights of the phenazine oxidase mimics. ETS‐NOCV (extended transition state‐natural orbitals for chemical valence) plots of the reactive intermediates portray the coordination‐driven depletion of electron density from the nitrogens of OPD to cobalt center leading to the enhancement of electrophilic character on para‐positioned C‐atoms with respect to N‐atoms of OPD, therby catalyzing the nucleophilic attack by second OPD to produce the oxidation product, 2,3‐diaminophenazine (DAP). Interestingly, we are able to isolate the oxidation product of the OPD oxidation reaction as a hydrated chloride salt, DAPH+Cl− ·3H2O (2). The crystal engineering perspectives of 2 attribute the intriguing fate of the secondary chlorides for the stabilization of the oxidation product in crystalline phase. This work envisions the synthesis, structural characterization, computational studies, and biomimics of the phenazine oxidase activity of a cobalt (III)‐dipyridyl amine complex under an ambient condition with successful isolation of the OPD oxidation product in single‐crystalline phase as a hydrated phenazine chloride salt.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aoc.6483</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2211-8985</orcidid><orcidid>https://orcid.org/0000-0002-4018-0451</orcidid><orcidid>https://orcid.org/0000-0003-2463-4967</orcidid><orcidid>https://orcid.org/0000-0003-0765-2979</orcidid><orcidid>https://orcid.org/0000-0002-9525-1886</orcidid><orcidid>https://orcid.org/0000-0002-5447-9729</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0268-2605
ispartof Applied organometallic chemistry, 2022-01, Vol.36 (1), p.n/a
issn 0268-2605
1099-0739
language eng
recordid cdi_proquest_journals_2621139158
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Catalysts
Chemistry
Chlorides
Cobalt
cobalt (III) complex
crystal engineering
Crystal structure
Density functional theory
Depletion
Electron density
Mass spectrometry
Oxidase
Oxidation
phenazine oxidase mimics
Phenylenediamine
Spectrophotometry
Structural analysis
Substrates
Supramolecular frameworks
X‐ray crystallography
title Biomimics of phenazine oxidase activity of a cobalt (III)‐dipyridylamine complex: Spectroscopic, structural, and computational studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimics%20of%20phenazine%20oxidase%20activity%20of%20a%20cobalt%20(III)%E2%80%90dipyridylamine%20complex:%20Spectroscopic,%20structural,%20and%20computational%20studies&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Mahato,%20Rajani%20Kanta&rft.date=2022-01&rft.volume=36&rft.issue=1&rft.epage=n/a&rft.issn=0268-2605&rft.eissn=1099-0739&rft_id=info:doi/10.1002/aoc.6483&rft_dat=%3Cproquest_cross%3E2621139158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621139158&rft_id=info:pmid/&rfr_iscdi=true