An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications
As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of cir...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computer-aided design of integrated circuits and systems 2022-02, Vol.41 (2), p.201-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 2 |
container_start_page | 201 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 41 |
creator | Shafiee, Maryam Ozev, Sule |
description | As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements. |
doi_str_mv | 10.1109/TCAD.2021.3077196 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2621066519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424175</ieee_id><sourcerecordid>2621066519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2Y9s9hii1UJthVY8LpvtbElJk7hJBf-9KS2eBob3ZuARcg90AkD10zrPnieMMphwqhTo5IKMQHMVC5BwSUaUqTSmVNFrctN1O0pBSKZH5Curo1kdT0usNtFHaLbB7ve2qDDKNrbtyx-M8vflKpovssg3YWB7rKpyi3UfzZp1tMK6G9aLZjMYbVuVzvZlU3e35MrbqsO78xyTz-nLOn-L58vXWZ7NY8eE7GPvmCycpV4J7Z2WClTikSMXSlDrKLfoCok2YVwXDEFyzcEnwFyKIk0lH5PH0902NN8H7Hqzaw6hHl4aljCgSSKHDGMCJ8qFpusCetOGcm_DrwFqjv3MsZ859jPnfoPzcHJKRPzntWAClOR_g_hqCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066519</pqid></control><display><type>article</type><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shafiee, Maryam ; Ozev, Sule</creator><creatorcontrib>Shafiee, Maryam ; Ozev, Sule</creatorcontrib><description>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3077196</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptable RFIC ; adaptive IoT sensor ; Algorithms ; Amplifier design ; Calibration ; CMOS ; deep learning ; Design optimization ; Integrated circuits ; Internet of Things ; Low noise ; low noise amplifier (LNS) ; Machine learning ; Parameters ; Performance evaluation ; Prediction algorithms ; Radio frequency ; Reconfiguration ; Statistical methods ; Statistical models ; Switches ; Tuning</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-02, Vol.41 (2), p.201-210</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</cites><orcidid>0000-0001-8096-1757 ; 0000-0002-3636-715X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shafiee, Maryam</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</description><subject>Adaptable RFIC</subject><subject>adaptive IoT sensor</subject><subject>Algorithms</subject><subject>Amplifier design</subject><subject>Calibration</subject><subject>CMOS</subject><subject>deep learning</subject><subject>Design optimization</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>Low noise</subject><subject>low noise amplifier (LNS)</subject><subject>Machine learning</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Prediction algorithms</subject><subject>Radio frequency</subject><subject>Reconfiguration</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Switches</subject><subject>Tuning</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2Y9s9hii1UJthVY8LpvtbElJk7hJBf-9KS2eBob3ZuARcg90AkD10zrPnieMMphwqhTo5IKMQHMVC5BwSUaUqTSmVNFrctN1O0pBSKZH5Curo1kdT0usNtFHaLbB7ve2qDDKNrbtyx-M8vflKpovssg3YWB7rKpyi3UfzZp1tMK6G9aLZjMYbVuVzvZlU3e35MrbqsO78xyTz-nLOn-L58vXWZ7NY8eE7GPvmCycpV4J7Z2WClTikSMXSlDrKLfoCok2YVwXDEFyzcEnwFyKIk0lH5PH0902NN8H7Hqzaw6hHl4aljCgSSKHDGMCJ8qFpusCetOGcm_DrwFqjv3MsZ859jPnfoPzcHJKRPzntWAClOR_g_hqCA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shafiee, Maryam</creator><creator>Ozev, Sule</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8096-1757</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid></search><sort><creationdate>20220201</creationdate><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><author>Shafiee, Maryam ; Ozev, Sule</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptable RFIC</topic><topic>adaptive IoT sensor</topic><topic>Algorithms</topic><topic>Amplifier design</topic><topic>Calibration</topic><topic>CMOS</topic><topic>deep learning</topic><topic>Design optimization</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>Low noise</topic><topic>low noise amplifier (LNS)</topic><topic>Machine learning</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Prediction algorithms</topic><topic>Radio frequency</topic><topic>Reconfiguration</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Switches</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Maryam</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shafiee, Maryam</au><au>Ozev, Sule</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3077196</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8096-1757</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2022-02, Vol.41 (2), p.201-210 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_proquest_journals_2621066519 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptable RFIC adaptive IoT sensor Algorithms Amplifier design Calibration CMOS deep learning Design optimization Integrated circuits Internet of Things Low noise low noise amplifier (LNS) Machine learning Parameters Performance evaluation Prediction algorithms Radio frequency Reconfiguration Statistical methods Statistical models Switches Tuning |
title | An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20In-Field%20Programmable%20Adaptive%20CMOS%20LNA%20for%20Intelligent%20IoT%20Sensor%20Node%20Applications&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Shafiee,%20Maryam&rft.date=2022-02-01&rft.volume=41&rft.issue=2&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3077196&rft_dat=%3Cproquest_RIE%3E2621066519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066519&rft_id=info:pmid/&rft_ieee_id=9424175&rfr_iscdi=true |