An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications

As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of cir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2022-02, Vol.41 (2), p.201-210
Hauptverfasser: Shafiee, Maryam, Ozev, Sule
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 210
container_issue 2
container_start_page 201
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 41
creator Shafiee, Maryam
Ozev, Sule
description As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.
doi_str_mv 10.1109/TCAD.2021.3077196
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2621066519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9424175</ieee_id><sourcerecordid>2621066519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2Y9s9hii1UJthVY8LpvtbElJk7hJBf-9KS2eBob3ZuARcg90AkD10zrPnieMMphwqhTo5IKMQHMVC5BwSUaUqTSmVNFrctN1O0pBSKZH5Curo1kdT0usNtFHaLbB7ve2qDDKNrbtyx-M8vflKpovssg3YWB7rKpyi3UfzZp1tMK6G9aLZjMYbVuVzvZlU3e35MrbqsO78xyTz-nLOn-L58vXWZ7NY8eE7GPvmCycpV4J7Z2WClTikSMXSlDrKLfoCok2YVwXDEFyzcEnwFyKIk0lH5PH0902NN8H7Hqzaw6hHl4aljCgSSKHDGMCJ8qFpusCetOGcm_DrwFqjv3MsZ859jPnfoPzcHJKRPzntWAClOR_g_hqCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066519</pqid></control><display><type>article</type><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Shafiee, Maryam ; Ozev, Sule</creator><creatorcontrib>Shafiee, Maryam ; Ozev, Sule</creatorcontrib><description>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3077196</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptable RFIC ; adaptive IoT sensor ; Algorithms ; Amplifier design ; Calibration ; CMOS ; deep learning ; Design optimization ; Integrated circuits ; Internet of Things ; Low noise ; low noise amplifier (LNS) ; Machine learning ; Parameters ; Performance evaluation ; Prediction algorithms ; Radio frequency ; Reconfiguration ; Statistical methods ; Statistical models ; Switches ; Tuning</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-02, Vol.41 (2), p.201-210</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</cites><orcidid>0000-0001-8096-1757 ; 0000-0002-3636-715X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9424175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9424175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shafiee, Maryam</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</description><subject>Adaptable RFIC</subject><subject>adaptive IoT sensor</subject><subject>Algorithms</subject><subject>Amplifier design</subject><subject>Calibration</subject><subject>CMOS</subject><subject>deep learning</subject><subject>Design optimization</subject><subject>Integrated circuits</subject><subject>Internet of Things</subject><subject>Low noise</subject><subject>low noise amplifier (LNS)</subject><subject>Machine learning</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Prediction algorithms</subject><subject>Radio frequency</subject><subject>Reconfiguration</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Switches</subject><subject>Tuning</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQQBdRsFZ_gHgJeE7d2Y9s9hii1UJthVY8LpvtbElJk7hJBf-9KS2eBob3ZuARcg90AkD10zrPnieMMphwqhTo5IKMQHMVC5BwSUaUqTSmVNFrctN1O0pBSKZH5Curo1kdT0usNtFHaLbB7ve2qDDKNrbtyx-M8vflKpovssg3YWB7rKpyi3UfzZp1tMK6G9aLZjMYbVuVzvZlU3e35MrbqsO78xyTz-nLOn-L58vXWZ7NY8eE7GPvmCycpV4J7Z2WClTikSMXSlDrKLfoCok2YVwXDEFyzcEnwFyKIk0lH5PH0902NN8H7Hqzaw6hHl4aljCgSSKHDGMCJ8qFpusCetOGcm_DrwFqjv3MsZ859jPnfoPzcHJKRPzntWAClOR_g_hqCA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Shafiee, Maryam</creator><creator>Ozev, Sule</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8096-1757</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid></search><sort><creationdate>20220201</creationdate><title>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</title><author>Shafiee, Maryam ; Ozev, Sule</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-fc25bca0f749fc957176fe3e34740ac03aecb5ea6239b2e153931f612c8e48853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptable RFIC</topic><topic>adaptive IoT sensor</topic><topic>Algorithms</topic><topic>Amplifier design</topic><topic>Calibration</topic><topic>CMOS</topic><topic>deep learning</topic><topic>Design optimization</topic><topic>Integrated circuits</topic><topic>Internet of Things</topic><topic>Low noise</topic><topic>low noise amplifier (LNS)</topic><topic>Machine learning</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Prediction algorithms</topic><topic>Radio frequency</topic><topic>Reconfiguration</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Switches</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiee, Maryam</creatorcontrib><creatorcontrib>Ozev, Sule</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shafiee, Maryam</au><au>Ozev, Sule</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>41</volume><issue>2</issue><spage>201</spage><epage>210</epage><pages>201-210</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>As the Internet of Things (IoT) is growing rapidly, there is an emerging need to facilitate development of IoT devices in the design cycle while optimized performance is obtained in the field of operation. This article develops reconfiguration approaches that enable post-production adaptation of circuit performance to enable RF IC reuse across different IoT applications. An adaptable low noise amplifier (LNA) is designed and fabricated in 130-nm CMOS technology to investigate the post-production reconfiguration concept. A statistical model that relates circuit-level reconfiguration parameters to circuit performances is generated by characterizing a limited number of samples. A deep learning algorithm is used to generate the model. This model is used to predict the performance parameters of the device in the field. The estimation error for LNA performance parameters are obtained in the simulation environment as well as chip measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3077196</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8096-1757</orcidid><orcidid>https://orcid.org/0000-0002-3636-715X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2022-02, Vol.41 (2), p.201-210
issn 0278-0070
1937-4151
language eng
recordid cdi_proquest_journals_2621066519
source IEEE Electronic Library (IEL)
subjects Adaptable RFIC
adaptive IoT sensor
Algorithms
Amplifier design
Calibration
CMOS
deep learning
Design optimization
Integrated circuits
Internet of Things
Low noise
low noise amplifier (LNS)
Machine learning
Parameters
Performance evaluation
Prediction algorithms
Radio frequency
Reconfiguration
Statistical methods
Statistical models
Switches
Tuning
title An In-Field Programmable Adaptive CMOS LNA for Intelligent IoT Sensor Node Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20In-Field%20Programmable%20Adaptive%20CMOS%20LNA%20for%20Intelligent%20IoT%20Sensor%20Node%20Applications&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Shafiee,%20Maryam&rft.date=2022-02-01&rft.volume=41&rft.issue=2&rft.spage=201&rft.epage=210&rft.pages=201-210&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3077196&rft_dat=%3Cproquest_RIE%3E2621066519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066519&rft_id=info:pmid/&rft_ieee_id=9424175&rfr_iscdi=true