Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems

Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.5343-5358
Hauptverfasser: Zhou, Xiaoping, Liu, Haichao, Wang, Bin, Huang, Jifeng, Wang, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5358
container_issue
container_start_page 5343
container_title IEEE access
container_volume 10
creator Zhou, Xiaoping
Liu, Haichao
Wang, Bin
Huang, Jifeng
Wang, Yang
description Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.
doi_str_mv 10.1109/ACCESS.2021.3128929
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2621064362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618943</ieee_id><doaj_id>oai_doaj_org_article_2543a5e0da1e4d9c9c40b06c8f7952a4</doaj_id><sourcerecordid>2621064362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1fHsHEag00OTuhRaKVRKrOWUmld8F_Ir47cDaFzmWHmvTczvKa5JnhBCFY_bvp-tdstKKZkwQjtFFWfmgtKpGqZYPLzf_XX5qqUPa7R1ZZYXjSvjxBLyug22CmkaPIJbU0MPo0ObcDkGOIz8hXQ_zYxwohWZQoHc8YiEx1axwmyhwzRAlqN4RDiPEwebY_jFNqnAhltw1hnULHtL_MX6o5Swjmvtw9odyoTHMq35os3Y4Gr93zZPN2tHvv7dvPwc93fbFrLcTe13oLiziliAQMWXgGBoQNlKXYYgHE5DFJygo2gVi4Hy8FgKpRXggjiFLts1rOuS2avX3J9J590MkH_a6T8rE2egh1BU8GZEYCdIcCdsqqeMGBpO79Ughpetb7PWi85_TlCmfQ-HXOs52sqKcGSM0kris0om1MpGfzHVoL12UM9e6jPHup3DyvremYFAPhgKEk6xRl7A3iNmbM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064362</pqid></control><display><type>article</type><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</creator><creatorcontrib>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</creatorcontrib><description>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3128929</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; ADMM ; Antennas ; Channel estimation ; Clustering ; Dictionaries ; dictionary learning ; Domains ; Estimation ; Hybrid systems ; Interference ; Machine learning ; manifold ; Manifold learning ; Manifolds (mathematics) ; Massive MIMO ; Millimeter waves ; MIMO ; MIMO communication ; MUSIC ; Performance enhancement ; Radio frequency ; Segmentation ; Signal classification ; tensor ; Tensors ; User groups</subject><ispartof>IEEE access, 2022, Vol.10, p.5343-5358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</citedby><cites>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</cites><orcidid>0000-0003-1644-9884 ; 0000-0002-2421-5255 ; 0000-0002-5860-3440 ; 0000-0001-8100-9194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618943$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Liu, Haichao</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jifeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</description><subject>Accuracy</subject><subject>ADMM</subject><subject>Antennas</subject><subject>Channel estimation</subject><subject>Clustering</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Domains</subject><subject>Estimation</subject><subject>Hybrid systems</subject><subject>Interference</subject><subject>Machine learning</subject><subject>manifold</subject><subject>Manifold learning</subject><subject>Manifolds (mathematics)</subject><subject>Massive MIMO</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>MUSIC</subject><subject>Performance enhancement</subject><subject>Radio frequency</subject><subject>Segmentation</subject><subject>Signal classification</subject><subject>tensor</subject><subject>Tensors</subject><subject>User groups</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1fHsHEag00OTuhRaKVRKrOWUmld8F_Ir47cDaFzmWHmvTczvKa5JnhBCFY_bvp-tdstKKZkwQjtFFWfmgtKpGqZYPLzf_XX5qqUPa7R1ZZYXjSvjxBLyug22CmkaPIJbU0MPo0ObcDkGOIz8hXQ_zYxwohWZQoHc8YiEx1axwmyhwzRAlqN4RDiPEwebY_jFNqnAhltw1hnULHtL_MX6o5Swjmvtw9odyoTHMq35os3Y4Gr93zZPN2tHvv7dvPwc93fbFrLcTe13oLiziliAQMWXgGBoQNlKXYYgHE5DFJygo2gVi4Hy8FgKpRXggjiFLts1rOuS2avX3J9J590MkH_a6T8rE2egh1BU8GZEYCdIcCdsqqeMGBpO79Ughpetb7PWi85_TlCmfQ-HXOs52sqKcGSM0kris0om1MpGfzHVoL12UM9e6jPHup3DyvremYFAPhgKEk6xRl7A3iNmbM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Xiaoping</creator><creator>Liu, Haichao</creator><creator>Wang, Bin</creator><creator>Huang, Jifeng</creator><creator>Wang, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1644-9884</orcidid><orcidid>https://orcid.org/0000-0002-2421-5255</orcidid><orcidid>https://orcid.org/0000-0002-5860-3440</orcidid><orcidid>https://orcid.org/0000-0001-8100-9194</orcidid></search><sort><creationdate>2022</creationdate><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><author>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>ADMM</topic><topic>Antennas</topic><topic>Channel estimation</topic><topic>Clustering</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Domains</topic><topic>Estimation</topic><topic>Hybrid systems</topic><topic>Interference</topic><topic>Machine learning</topic><topic>manifold</topic><topic>Manifold learning</topic><topic>Manifolds (mathematics)</topic><topic>Massive MIMO</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>MUSIC</topic><topic>Performance enhancement</topic><topic>Radio frequency</topic><topic>Segmentation</topic><topic>Signal classification</topic><topic>tensor</topic><topic>Tensors</topic><topic>User groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Liu, Haichao</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jifeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoping</au><au>Liu, Haichao</au><au>Wang, Bin</au><au>Huang, Jifeng</au><au>Wang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>5343</spage><epage>5358</epage><pages>5343-5358</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3128929</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1644-9884</orcidid><orcidid>https://orcid.org/0000-0002-2421-5255</orcidid><orcidid>https://orcid.org/0000-0002-5860-3440</orcidid><orcidid>https://orcid.org/0000-0001-8100-9194</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.5343-5358
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2621064362
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
ADMM
Antennas
Channel estimation
Clustering
Dictionaries
dictionary learning
Domains
Estimation
Hybrid systems
Interference
Machine learning
manifold
Manifold learning
Manifolds (mathematics)
Massive MIMO
Millimeter waves
MIMO
MIMO communication
MUSIC
Performance enhancement
Radio frequency
Segmentation
Signal classification
tensor
Tensors
User groups
title Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Dictionary%20Manifold%20Learning%20for%20Channel%20Estimation%20and%20Interference%20Elimination%20of%20Multi-User%20Millimeter-Wave%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Xiaoping&rft.date=2022&rft.volume=10&rft.spage=5343&rft.epage=5358&rft.pages=5343-5358&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3128929&rft_dat=%3Cproquest_doaj_%3E2621064362%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064362&rft_id=info:pmid/&rft_ieee_id=9618943&rft_doaj_id=oai_doaj_org_article_2543a5e0da1e4d9c9c40b06c8f7952a4&rfr_iscdi=true