Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems
Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.5343-5358 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5358 |
---|---|
container_issue | |
container_start_page | 5343 |
container_title | IEEE access |
container_volume | 10 |
creator | Zhou, Xiaoping Liu, Haichao Wang, Bin Huang, Jifeng Wang, Yang |
description | Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method. |
doi_str_mv | 10.1109/ACCESS.2021.3128929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2621064362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618943</ieee_id><doaj_id>oai_doaj_org_article_2543a5e0da1e4d9c9c40b06c8f7952a4</doaj_id><sourcerecordid>2621064362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1fHsHEag00OTuhRaKVRKrOWUmld8F_Ir47cDaFzmWHmvTczvKa5JnhBCFY_bvp-tdstKKZkwQjtFFWfmgtKpGqZYPLzf_XX5qqUPa7R1ZZYXjSvjxBLyug22CmkaPIJbU0MPo0ObcDkGOIz8hXQ_zYxwohWZQoHc8YiEx1axwmyhwzRAlqN4RDiPEwebY_jFNqnAhltw1hnULHtL_MX6o5Swjmvtw9odyoTHMq35os3Y4Gr93zZPN2tHvv7dvPwc93fbFrLcTe13oLiziliAQMWXgGBoQNlKXYYgHE5DFJygo2gVi4Hy8FgKpRXggjiFLts1rOuS2avX3J9J590MkH_a6T8rE2egh1BU8GZEYCdIcCdsqqeMGBpO79Ughpetb7PWi85_TlCmfQ-HXOs52sqKcGSM0kris0om1MpGfzHVoL12UM9e6jPHup3DyvremYFAPhgKEk6xRl7A3iNmbM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064362</pqid></control><display><type>article</type><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</creator><creatorcontrib>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</creatorcontrib><description>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3128929</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; ADMM ; Antennas ; Channel estimation ; Clustering ; Dictionaries ; dictionary learning ; Domains ; Estimation ; Hybrid systems ; Interference ; Machine learning ; manifold ; Manifold learning ; Manifolds (mathematics) ; Massive MIMO ; Millimeter waves ; MIMO ; MIMO communication ; MUSIC ; Performance enhancement ; Radio frequency ; Segmentation ; Signal classification ; tensor ; Tensors ; User groups</subject><ispartof>IEEE access, 2022, Vol.10, p.5343-5358</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</citedby><cites>FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</cites><orcidid>0000-0003-1644-9884 ; 0000-0002-2421-5255 ; 0000-0002-5860-3440 ; 0000-0001-8100-9194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618943$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Liu, Haichao</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jifeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</description><subject>Accuracy</subject><subject>ADMM</subject><subject>Antennas</subject><subject>Channel estimation</subject><subject>Clustering</subject><subject>Dictionaries</subject><subject>dictionary learning</subject><subject>Domains</subject><subject>Estimation</subject><subject>Hybrid systems</subject><subject>Interference</subject><subject>Machine learning</subject><subject>manifold</subject><subject>Manifold learning</subject><subject>Manifolds (mathematics)</subject><subject>Massive MIMO</subject><subject>Millimeter waves</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>MUSIC</subject><subject>Performance enhancement</subject><subject>Radio frequency</subject><subject>Segmentation</subject><subject>Signal classification</subject><subject>tensor</subject><subject>Tensors</subject><subject>User groups</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1fHsHEag00OTuhRaKVRKrOWUmld8F_Ir47cDaFzmWHmvTczvKa5JnhBCFY_bvp-tdstKKZkwQjtFFWfmgtKpGqZYPLzf_XX5qqUPa7R1ZZYXjSvjxBLyug22CmkaPIJbU0MPo0ObcDkGOIz8hXQ_zYxwohWZQoHc8YiEx1axwmyhwzRAlqN4RDiPEwebY_jFNqnAhltw1hnULHtL_MX6o5Swjmvtw9odyoTHMq35os3Y4Gr93zZPN2tHvv7dvPwc93fbFrLcTe13oLiziliAQMWXgGBoQNlKXYYgHE5DFJygo2gVi4Hy8FgKpRXggjiFLts1rOuS2avX3J9J590MkH_a6T8rE2egh1BU8GZEYCdIcCdsqqeMGBpO79Ughpetb7PWi85_TlCmfQ-HXOs52sqKcGSM0kris0om1MpGfzHVoL12UM9e6jPHup3DyvremYFAPhgKEk6xRl7A3iNmbM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhou, Xiaoping</creator><creator>Liu, Haichao</creator><creator>Wang, Bin</creator><creator>Huang, Jifeng</creator><creator>Wang, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1644-9884</orcidid><orcidid>https://orcid.org/0000-0002-2421-5255</orcidid><orcidid>https://orcid.org/0000-0002-5860-3440</orcidid><orcidid>https://orcid.org/0000-0001-8100-9194</orcidid></search><sort><creationdate>2022</creationdate><title>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</title><author>Zhou, Xiaoping ; Liu, Haichao ; Wang, Bin ; Huang, Jifeng ; Wang, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fce94dd91ce0e05f9e1eb8e9c20d0ee346bb66410a52c67bc4ea0259f95151d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>ADMM</topic><topic>Antennas</topic><topic>Channel estimation</topic><topic>Clustering</topic><topic>Dictionaries</topic><topic>dictionary learning</topic><topic>Domains</topic><topic>Estimation</topic><topic>Hybrid systems</topic><topic>Interference</topic><topic>Machine learning</topic><topic>manifold</topic><topic>Manifold learning</topic><topic>Manifolds (mathematics)</topic><topic>Massive MIMO</topic><topic>Millimeter waves</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>MUSIC</topic><topic>Performance enhancement</topic><topic>Radio frequency</topic><topic>Segmentation</topic><topic>Signal classification</topic><topic>tensor</topic><topic>Tensors</topic><topic>User groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaoping</creatorcontrib><creatorcontrib>Liu, Haichao</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Huang, Jifeng</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaoping</au><au>Liu, Haichao</au><au>Wang, Bin</au><au>Huang, Jifeng</au><au>Wang, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>5343</spage><epage>5358</epage><pages>5343-5358</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Millimeter Wave (mmWave) massive multiple-input multiple-output (MIMO) systems with hybrid analog-digital architectures can greatly increase system capacity and communicate with multiple users at the same time. Accurate channel estimation is crucial for multi-user communications, but its accuracy is limited as the number of antennas and users increases. In the matrix high-dimensional operation for multi-user channel estimation, not only is it computationally intensive, but also the estimation accuracy is low. It makes our work turn to channel estimation of the user group within a certain region to improve the accuracy of estimation. In this paper, we propose a tensor dictionary manifold learning method for channel estimation and interference elimination of the multi-user mmWave massive MIMO system. A multi-user digital-analog mixed received signal model is presented. The tensor dictionary manifold learning scheme is proposed to model the received signal as a third-order low-rank tensor to handle the high-dimensional user, antenna, and channel. After segmentation, clustering and manifold learning, multiple tensor dictionary manifold models containing a group of user signals are fitted. Tensor dictionary manifold learning can take advantage of the inherent multi-domain properties of signals in the frequency, time, code and spatial domains to maintain inter-user correlation within a user group while reducing the high-dimensional channels of the user group. Using the convex relaxation property of the tensor alternating direction method, we propose a strategy to eliminate interference from other groups. And with the help of the multi-signal classification method, the channel parameters of user groups are obtained to improve the accuracy of multi-user channel estimation. This method can perform channel estimation for multiple users with only a few pilots, and improve the performance of the system. Numerical results confirm the good performance of this method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3128929</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1644-9884</orcidid><orcidid>https://orcid.org/0000-0002-2421-5255</orcidid><orcidid>https://orcid.org/0000-0002-5860-3440</orcidid><orcidid>https://orcid.org/0000-0001-8100-9194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.5343-5358 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2621064362 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy ADMM Antennas Channel estimation Clustering Dictionaries dictionary learning Domains Estimation Hybrid systems Interference Machine learning manifold Manifold learning Manifolds (mathematics) Massive MIMO Millimeter waves MIMO MIMO communication MUSIC Performance enhancement Radio frequency Segmentation Signal classification tensor Tensors User groups |
title | Tensor Dictionary Manifold Learning for Channel Estimation and Interference Elimination of Multi-User Millimeter-Wave Massive MIMO Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T13%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20Dictionary%20Manifold%20Learning%20for%20Channel%20Estimation%20and%20Interference%20Elimination%20of%20Multi-User%20Millimeter-Wave%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20access&rft.au=Zhou,%20Xiaoping&rft.date=2022&rft.volume=10&rft.spage=5343&rft.epage=5358&rft.pages=5343-5358&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3128929&rft_dat=%3Cproquest_doaj_%3E2621064362%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064362&rft_id=info:pmid/&rft_ieee_id=9618943&rft_doaj_id=oai_doaj_org_article_2543a5e0da1e4d9c9c40b06c8f7952a4&rfr_iscdi=true |