Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction
Gamma/neutron dual detection has occupied significant territory in the field of homeland security and nuclear energy development. Cs 2 LiLaBr 6 (CLLB) has shown both neutron/gamma dual-mode detection capability and excellent scintillation properties. Herein, we explored the Cs 2 LaBr 5 -LiBr phase d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2022-01, Vol.69 (1), p.56-60 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | IEEE transactions on nuclear science |
container_volume | 69 |
creator | Zhang, Xianggang Cai, Zhuochen Kang, Zhe Zhai, Huiwen Yin, Ziang Jie, Wanqi Wang, Tao |
description | Gamma/neutron dual detection has occupied significant territory in the field of homeland security and nuclear energy development. Cs 2 LiLaBr 6 (CLLB) has shown both neutron/gamma dual-mode detection capability and excellent scintillation properties. Herein, we explored the Cs 2 LaBr 5 -LiBr phase diagram through powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) tests of synthesized polycrystalline materials. The Cs 2 LaBr 5 -rich side of the phase diagram is similar to a binary peritectic phase diagram, where the peritectic line (447 °C) extends to a LiBr content of 61%. The LiBr-rich side of the phase diagram resembles a binary eutectic phase diagram, where the eutectic point (395 °C) is located at 80% LiBr concentration. Guided by the phase diagram, CLLB ingots were designed to grow from the LiBr-rich side with different concentrations of LiBr. The scintillator properties of CLLB crystals were found to be deteriorated by the increasing defects with elevated LiBr contents. A concentration of LiBr around 55% was a preference for the growth of high-quality CLLB. A better understanding of the Cs 2 LaBr 5 -LiBr phase diagram benefits the growth of CLLB crystals and provides considerations for other halide double perovskites. |
doi_str_mv | 10.1109/TNS.2021.3134286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2621064344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9645755</ieee_id><sourcerecordid>2621064344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-bac2de8d002dad910e4e3420657bc8eabb9a4b56d7d1cd2a760997610f39afdf3</originalsourceid><addsrcrecordid>eNotj01Lw0AYhBdRsFbvgpcFz6n7nezRRq1CsELrObzJbuzWNKm7W6X-eqP1NAzzMMMgdEnJhFKib5bPiwkjjE445YJl6giNqJRZQmWaHaMRITRLtND6FJ2FsB6skESO0Hvu9yFCi2e-_4orDJ3B8210G_cN0fUd7hucB1a4AqZe4UXtuujaFmLv8acDHFf2Lx9SmRRu6vHLCoLFdw7ePGxw3nch-l3923WOThpog7341zF6fbhf5o9JMZ895bdF4ijnMamgZsZmhhBmwGhKrLDDJaJkWtWZharSICqpTGpobRikimidKkoarqExDR-j60Pv1vcfOxtiue53vhsmS6YYJUpwIQbq6kA5a2259W4Dfl9qJWQqJf8Bu9RjdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621064344</pqid></control><display><type>article</type><title>Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xianggang ; Cai, Zhuochen ; Kang, Zhe ; Zhai, Huiwen ; Yin, Ziang ; Jie, Wanqi ; Wang, Tao</creator><creatorcontrib>Zhang, Xianggang ; Cai, Zhuochen ; Kang, Zhe ; Zhai, Huiwen ; Yin, Ziang ; Jie, Wanqi ; Wang, Tao</creatorcontrib><description>Gamma/neutron dual detection has occupied significant territory in the field of homeland security and nuclear energy development. Cs 2 LiLaBr 6 (CLLB) has shown both neutron/gamma dual-mode detection capability and excellent scintillation properties. Herein, we explored the Cs 2 LaBr 5 -LiBr phase diagram through powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) tests of synthesized polycrystalline materials. The Cs 2 LaBr 5 -rich side of the phase diagram is similar to a binary peritectic phase diagram, where the peritectic line (447 °C) extends to a LiBr content of 61%. The LiBr-rich side of the phase diagram resembles a binary eutectic phase diagram, where the eutectic point (395 °C) is located at 80% LiBr concentration. Guided by the phase diagram, CLLB ingots were designed to grow from the LiBr-rich side with different concentrations of LiBr. The scintillator properties of CLLB crystals were found to be deteriorated by the increasing defects with elevated LiBr contents. A concentration of LiBr around 55% was a preference for the growth of high-quality CLLB. A better understanding of the Cs 2 LaBr 5 -LiBr phase diagram benefits the growth of CLLB crystals and provides considerations for other halide double perovskites.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2021.3134286</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Calorimetry ; Crystal defects ; Crystal growth ; Crystals ; Cs₂LiLaBr₆ (CLLB) crystals ; Differential scanning calorimetry ; double perovskites ; Eutectic temperature ; National security ; Nuclear energy ; Nuclear reactors ; Optimization ; Perovskites ; phase diagram ; Phase diagrams ; Powders ; Raw materials ; Scintillation counters ; scintillator materials ; Temperature measurement ; X ray powder diffraction ; X-ray diffraction ; X-ray scattering</subject><ispartof>IEEE transactions on nuclear science, 2022-01, Vol.69 (1), p.56-60</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3271-3331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9645755$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9645755$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xianggang</creatorcontrib><creatorcontrib>Cai, Zhuochen</creatorcontrib><creatorcontrib>Kang, Zhe</creatorcontrib><creatorcontrib>Zhai, Huiwen</creatorcontrib><creatorcontrib>Yin, Ziang</creatorcontrib><creatorcontrib>Jie, Wanqi</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><title>Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Gamma/neutron dual detection has occupied significant territory in the field of homeland security and nuclear energy development. Cs 2 LiLaBr 6 (CLLB) has shown both neutron/gamma dual-mode detection capability and excellent scintillation properties. Herein, we explored the Cs 2 LaBr 5 -LiBr phase diagram through powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) tests of synthesized polycrystalline materials. The Cs 2 LaBr 5 -rich side of the phase diagram is similar to a binary peritectic phase diagram, where the peritectic line (447 °C) extends to a LiBr content of 61%. The LiBr-rich side of the phase diagram resembles a binary eutectic phase diagram, where the eutectic point (395 °C) is located at 80% LiBr concentration. Guided by the phase diagram, CLLB ingots were designed to grow from the LiBr-rich side with different concentrations of LiBr. The scintillator properties of CLLB crystals were found to be deteriorated by the increasing defects with elevated LiBr contents. A concentration of LiBr around 55% was a preference for the growth of high-quality CLLB. A better understanding of the Cs 2 LaBr 5 -LiBr phase diagram benefits the growth of CLLB crystals and provides considerations for other halide double perovskites.</description><subject>Calorimetry</subject><subject>Crystal defects</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Cs₂LiLaBr₆ (CLLB) crystals</subject><subject>Differential scanning calorimetry</subject><subject>double perovskites</subject><subject>Eutectic temperature</subject><subject>National security</subject><subject>Nuclear energy</subject><subject>Nuclear reactors</subject><subject>Optimization</subject><subject>Perovskites</subject><subject>phase diagram</subject><subject>Phase diagrams</subject><subject>Powders</subject><subject>Raw materials</subject><subject>Scintillation counters</subject><subject>scintillator materials</subject><subject>Temperature measurement</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><subject>X-ray scattering</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotj01Lw0AYhBdRsFbvgpcFz6n7nezRRq1CsELrObzJbuzWNKm7W6X-eqP1NAzzMMMgdEnJhFKib5bPiwkjjE445YJl6giNqJRZQmWaHaMRITRLtND6FJ2FsB6skESO0Hvu9yFCi2e-_4orDJ3B8210G_cN0fUd7hucB1a4AqZe4UXtuujaFmLv8acDHFf2Lx9SmRRu6vHLCoLFdw7ePGxw3nch-l3923WOThpog7341zF6fbhf5o9JMZ895bdF4ijnMamgZsZmhhBmwGhKrLDDJaJkWtWZharSICqpTGpobRikimidKkoarqExDR-j60Pv1vcfOxtiue53vhsmS6YYJUpwIQbq6kA5a2259W4Dfl9qJWQqJf8Bu9RjdQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Zhang, Xianggang</creator><creator>Cai, Zhuochen</creator><creator>Kang, Zhe</creator><creator>Zhai, Huiwen</creator><creator>Yin, Ziang</creator><creator>Jie, Wanqi</creator><creator>Wang, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-3271-3331</orcidid></search><sort><creationdate>202201</creationdate><title>Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction</title><author>Zhang, Xianggang ; Cai, Zhuochen ; Kang, Zhe ; Zhai, Huiwen ; Yin, Ziang ; Jie, Wanqi ; Wang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-bac2de8d002dad910e4e3420657bc8eabb9a4b56d7d1cd2a760997610f39afdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calorimetry</topic><topic>Crystal defects</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Cs₂LiLaBr₆ (CLLB) crystals</topic><topic>Differential scanning calorimetry</topic><topic>double perovskites</topic><topic>Eutectic temperature</topic><topic>National security</topic><topic>Nuclear energy</topic><topic>Nuclear reactors</topic><topic>Optimization</topic><topic>Perovskites</topic><topic>phase diagram</topic><topic>Phase diagrams</topic><topic>Powders</topic><topic>Raw materials</topic><topic>Scintillation counters</topic><topic>scintillator materials</topic><topic>Temperature measurement</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xianggang</creatorcontrib><creatorcontrib>Cai, Zhuochen</creatorcontrib><creatorcontrib>Kang, Zhe</creatorcontrib><creatorcontrib>Zhai, Huiwen</creatorcontrib><creatorcontrib>Yin, Ziang</creatorcontrib><creatorcontrib>Jie, Wanqi</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xianggang</au><au>Cai, Zhuochen</au><au>Kang, Zhe</au><au>Zhai, Huiwen</au><au>Yin, Ziang</au><au>Jie, Wanqi</au><au>Wang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2022-01</date><risdate>2022</risdate><volume>69</volume><issue>1</issue><spage>56</spage><epage>60</epage><pages>56-60</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Gamma/neutron dual detection has occupied significant territory in the field of homeland security and nuclear energy development. Cs 2 LiLaBr 6 (CLLB) has shown both neutron/gamma dual-mode detection capability and excellent scintillation properties. Herein, we explored the Cs 2 LaBr 5 -LiBr phase diagram through powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) tests of synthesized polycrystalline materials. The Cs 2 LaBr 5 -rich side of the phase diagram is similar to a binary peritectic phase diagram, where the peritectic line (447 °C) extends to a LiBr content of 61%. The LiBr-rich side of the phase diagram resembles a binary eutectic phase diagram, where the eutectic point (395 °C) is located at 80% LiBr concentration. Guided by the phase diagram, CLLB ingots were designed to grow from the LiBr-rich side with different concentrations of LiBr. The scintillator properties of CLLB crystals were found to be deteriorated by the increasing defects with elevated LiBr contents. A concentration of LiBr around 55% was a preference for the growth of high-quality CLLB. A better understanding of the Cs 2 LaBr 5 -LiBr phase diagram benefits the growth of CLLB crystals and provides considerations for other halide double perovskites.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2021.3134286</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3271-3331</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2022-01, Vol.69 (1), p.56-60 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2621064344 |
source | IEEE Electronic Library (IEL) |
subjects | Calorimetry Crystal defects Crystal growth Crystals Cs₂LiLaBr₆ (CLLB) crystals Differential scanning calorimetry double perovskites Eutectic temperature National security Nuclear energy Nuclear reactors Optimization Perovskites phase diagram Phase diagrams Powders Raw materials Scintillation counters scintillator materials Temperature measurement X ray powder diffraction X-ray diffraction X-ray scattering |
title | Crystal Growth and Optimization of Cs2LiLaBr6 Scintillator via the Cs2LaBr5-LiBr Phase Diagram Construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A14%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Growth%20and%20Optimization%20of%20Cs2LiLaBr6%20Scintillator%20via%20the%20Cs2LaBr5-LiBr%20Phase%20Diagram%20Construction&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Zhang,%20Xianggang&rft.date=2022-01&rft.volume=69&rft.issue=1&rft.spage=56&rft.epage=60&rft.pages=56-60&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2021.3134286&rft_dat=%3Cproquest_RIE%3E2621064344%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621064344&rft_id=info:pmid/&rft_ieee_id=9645755&rfr_iscdi=true |