Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite

•The magnetic phase diagram of Ba(Fe1−xScx)12O19 was constructed in the T-x plane.•From the phase diagram, it was determined that helimagnetism appeared at x ≳ 0.06.•The antiferromagnetic phase appeared at x ≳ 0.19 through the coexistence region with helimagnetism.•The turn angle of the helix as a f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-02, Vol.892, p.162125, Article 162125
Hauptverfasser: Maruyama, Kenichi, Tanaka, Seiya, Natori, Shun, Bizen, Ikuya, Amemiya, Keisuke, Kiyanagi, Ryoji, Nakao, Akiko, Moriyama, Kentaro, Ishikawa, Yoshihisa, Amako, Yasushi, Iiyama, Taku, Futamura, Ryusuke, Utsumi, Shigenori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 162125
container_title Journal of alloys and compounds
container_volume 892
creator Maruyama, Kenichi
Tanaka, Seiya
Natori, Shun
Bizen, Ikuya
Amemiya, Keisuke
Kiyanagi, Ryoji
Nakao, Akiko
Moriyama, Kentaro
Ishikawa, Yoshihisa
Amako, Yasushi
Iiyama, Taku
Futamura, Ryusuke
Utsumi, Shigenori
description •The magnetic phase diagram of Ba(Fe1−xScx)12O19 was constructed in the T-x plane.•From the phase diagram, it was determined that helimagnetism appeared at x ≳ 0.06.•The antiferromagnetic phase appeared at x ≳ 0.19 through the coexistence region with helimagnetism.•The turn angle of the helix as a function of x and T was clarified. [Display omitted] Hexagonal ferrite Ba(Fe1−xScx)12O19 is an important magnetic oxide material in both science and engineering because it exhibits helimagnetism around room temperature (300 K). In this study, the magnetic phase diagram of Ba(Fe1−xScx)12O19 consisting of ferri-, heli-, antiferro-, and paramagnetic phases has been completed through magnetization and neutron diffraction measurements. The magnetic phase transition temperature to paramagnetism decreases with the increase in x, and the temperature at which the magnetization reaches a maximum, which corresponds to the magnetic phase transition from heli- to ferrimagnetism, is determined for low x crystals. The temperatures at which helimagnetism appears are precisely determined by observing the magnetic satellite reflection peaks in neutron diffraction at various temperatures, which characterize helimagnetism. Based on these results, the magnetic phase diagram of the Ba(Fe1−xScx)12O19 system is constructed in the T-x plane. Helimagnetism appears at x ≳ 0.06, and magnetism with antiferromagnetic components appears as the extension phase of helimagnetism at x ≳ 0.19 through the coexistence region. The turn angle ϕ0 of the helix for each x crystal is calculated from the relationship, ϕ0 = 2πδ, where δ is the incommensurability. The turn angle ϕ0 decreases with the increase in temperature for the same x crystal, and increases with the increase in x at the same temperature. Furthermore, it is found that there are clear thresholds at which ϕ0 cannot take values between 0°
doi_str_mv 10.1016/j.jallcom.2021.162125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620965912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821035350</els_id><sourcerecordid>2620965912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-ab3c588ca0b2e74d4a30637137b392e9b0d2477a67934efc7ddaee53abed890b3</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EEqVwBKRIbMoiwT9JHK8QVBSQiroA1pbjvLSO0qbYKQo3gC0n6IKT9Cg9CalS1qxm8WZGbz6EzgkOCCbxVREUqix1NQ8opiQgMSU0OkA9knDmh3EsDlEPCxr5CUuSY3TiXIExJoKRHkqf1HQBtdHecqYceJlRU6vmXpV7MyjN_O96qwYjINvP7-ZZN5eETojwBniz3n79bNbNXnFAL9tYo6bVQpVeDtaaGk7RUa5KB2d77aPX0d3L8MEfT-4fhzdjXzOS1L5KmY6SRCucUuBhFiqGY8YJ4ykTFESKMxpyrmIuWAi55lmmACKmUsgSgVPWRxdd79JWbytwtSyqlW0fcZLGFIs4EoS2rqhzaVs5ZyGXS9vOtB-SYLnDKQu5xyl3OGWHs81ddzloJ7wbsNJpAwsNmbGga5lV5p-GX1ShhGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620965912</pqid></control><display><type>article</type><title>Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Maruyama, Kenichi ; Tanaka, Seiya ; Natori, Shun ; Bizen, Ikuya ; Amemiya, Keisuke ; Kiyanagi, Ryoji ; Nakao, Akiko ; Moriyama, Kentaro ; Ishikawa, Yoshihisa ; Amako, Yasushi ; Iiyama, Taku ; Futamura, Ryusuke ; Utsumi, Shigenori</creator><creatorcontrib>Maruyama, Kenichi ; Tanaka, Seiya ; Natori, Shun ; Bizen, Ikuya ; Amemiya, Keisuke ; Kiyanagi, Ryoji ; Nakao, Akiko ; Moriyama, Kentaro ; Ishikawa, Yoshihisa ; Amako, Yasushi ; Iiyama, Taku ; Futamura, Ryusuke ; Utsumi, Shigenori</creatorcontrib><description>•The magnetic phase diagram of Ba(Fe1−xScx)12O19 was constructed in the T-x plane.•From the phase diagram, it was determined that helimagnetism appeared at x ≳ 0.06.•The antiferromagnetic phase appeared at x ≳ 0.19 through the coexistence region with helimagnetism.•The turn angle of the helix as a function of x and T was clarified. [Display omitted] Hexagonal ferrite Ba(Fe1−xScx)12O19 is an important magnetic oxide material in both science and engineering because it exhibits helimagnetism around room temperature (300 K). In this study, the magnetic phase diagram of Ba(Fe1−xScx)12O19 consisting of ferri-, heli-, antiferro-, and paramagnetic phases has been completed through magnetization and neutron diffraction measurements. The magnetic phase transition temperature to paramagnetism decreases with the increase in x, and the temperature at which the magnetization reaches a maximum, which corresponds to the magnetic phase transition from heli- to ferrimagnetism, is determined for low x crystals. The temperatures at which helimagnetism appears are precisely determined by observing the magnetic satellite reflection peaks in neutron diffraction at various temperatures, which characterize helimagnetism. Based on these results, the magnetic phase diagram of the Ba(Fe1−xScx)12O19 system is constructed in the T-x plane. Helimagnetism appears at x ≳ 0.06, and magnetism with antiferromagnetic components appears as the extension phase of helimagnetism at x ≳ 0.19 through the coexistence region. The turn angle ϕ0 of the helix for each x crystal is calculated from the relationship, ϕ0 = 2πδ, where δ is the incommensurability. The turn angle ϕ0 decreases with the increase in temperature for the same x crystal, and increases with the increase in x at the same temperature. Furthermore, it is found that there are clear thresholds at which ϕ0 cannot take values between 0°&lt;ϕ0 ≲ 90° and 170° ≲ ϕ0&lt; 180°.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.162125</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Antiferromagnetism ; Crystals ; Ferrimagnetism ; Ferrites ; Helimagnetism ; Hexagonal ferrite ; Magnetic phase diagram ; Magnetization ; Neutron diffraction ; Neutrons ; Paramagnetism ; Phase diagrams ; Phase transitions ; Room temperature ; Satellite observation ; Single crystal of Ba(Fe1−xScx)12O19 ; Temperature ; TOF-Laue neutron diffraction ; Transition temperature ; Turn angle of the helix</subject><ispartof>Journal of alloys and compounds, 2022-02, Vol.892, p.162125, Article 162125</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-ab3c588ca0b2e74d4a30637137b392e9b0d2477a67934efc7ddaee53abed890b3</citedby><cites>FETCH-LOGICAL-c318t-ab3c588ca0b2e74d4a30637137b392e9b0d2477a67934efc7ddaee53abed890b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.162125$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Maruyama, Kenichi</creatorcontrib><creatorcontrib>Tanaka, Seiya</creatorcontrib><creatorcontrib>Natori, Shun</creatorcontrib><creatorcontrib>Bizen, Ikuya</creatorcontrib><creatorcontrib>Amemiya, Keisuke</creatorcontrib><creatorcontrib>Kiyanagi, Ryoji</creatorcontrib><creatorcontrib>Nakao, Akiko</creatorcontrib><creatorcontrib>Moriyama, Kentaro</creatorcontrib><creatorcontrib>Ishikawa, Yoshihisa</creatorcontrib><creatorcontrib>Amako, Yasushi</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><creatorcontrib>Futamura, Ryusuke</creatorcontrib><creatorcontrib>Utsumi, Shigenori</creatorcontrib><title>Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite</title><title>Journal of alloys and compounds</title><description>•The magnetic phase diagram of Ba(Fe1−xScx)12O19 was constructed in the T-x plane.•From the phase diagram, it was determined that helimagnetism appeared at x ≳ 0.06.•The antiferromagnetic phase appeared at x ≳ 0.19 through the coexistence region with helimagnetism.•The turn angle of the helix as a function of x and T was clarified. [Display omitted] Hexagonal ferrite Ba(Fe1−xScx)12O19 is an important magnetic oxide material in both science and engineering because it exhibits helimagnetism around room temperature (300 K). In this study, the magnetic phase diagram of Ba(Fe1−xScx)12O19 consisting of ferri-, heli-, antiferro-, and paramagnetic phases has been completed through magnetization and neutron diffraction measurements. The magnetic phase transition temperature to paramagnetism decreases with the increase in x, and the temperature at which the magnetization reaches a maximum, which corresponds to the magnetic phase transition from heli- to ferrimagnetism, is determined for low x crystals. The temperatures at which helimagnetism appears are precisely determined by observing the magnetic satellite reflection peaks in neutron diffraction at various temperatures, which characterize helimagnetism. Based on these results, the magnetic phase diagram of the Ba(Fe1−xScx)12O19 system is constructed in the T-x plane. Helimagnetism appears at x ≳ 0.06, and magnetism with antiferromagnetic components appears as the extension phase of helimagnetism at x ≳ 0.19 through the coexistence region. The turn angle ϕ0 of the helix for each x crystal is calculated from the relationship, ϕ0 = 2πδ, where δ is the incommensurability. The turn angle ϕ0 decreases with the increase in temperature for the same x crystal, and increases with the increase in x at the same temperature. Furthermore, it is found that there are clear thresholds at which ϕ0 cannot take values between 0°&lt;ϕ0 ≲ 90° and 170° ≲ ϕ0&lt; 180°.</description><subject>Antiferromagnetism</subject><subject>Crystals</subject><subject>Ferrimagnetism</subject><subject>Ferrites</subject><subject>Helimagnetism</subject><subject>Hexagonal ferrite</subject><subject>Magnetic phase diagram</subject><subject>Magnetization</subject><subject>Neutron diffraction</subject><subject>Neutrons</subject><subject>Paramagnetism</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>Room temperature</subject><subject>Satellite observation</subject><subject>Single crystal of Ba(Fe1−xScx)12O19</subject><subject>Temperature</subject><subject>TOF-Laue neutron diffraction</subject><subject>Transition temperature</subject><subject>Turn angle of the helix</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhC0EEqVwBKRIbMoiwT9JHK8QVBSQiroA1pbjvLSO0qbYKQo3gC0n6IKT9Cg9CalS1qxm8WZGbz6EzgkOCCbxVREUqix1NQ8opiQgMSU0OkA9knDmh3EsDlEPCxr5CUuSY3TiXIExJoKRHkqf1HQBtdHecqYceJlRU6vmXpV7MyjN_O96qwYjINvP7-ZZN5eETojwBniz3n79bNbNXnFAL9tYo6bVQpVeDtaaGk7RUa5KB2d77aPX0d3L8MEfT-4fhzdjXzOS1L5KmY6SRCucUuBhFiqGY8YJ4ykTFESKMxpyrmIuWAi55lmmACKmUsgSgVPWRxdd79JWbytwtSyqlW0fcZLGFIs4EoS2rqhzaVs5ZyGXS9vOtB-SYLnDKQu5xyl3OGWHs81ddzloJ7wbsNJpAwsNmbGga5lV5p-GX1ShhGQ</recordid><startdate>20220205</startdate><enddate>20220205</enddate><creator>Maruyama, Kenichi</creator><creator>Tanaka, Seiya</creator><creator>Natori, Shun</creator><creator>Bizen, Ikuya</creator><creator>Amemiya, Keisuke</creator><creator>Kiyanagi, Ryoji</creator><creator>Nakao, Akiko</creator><creator>Moriyama, Kentaro</creator><creator>Ishikawa, Yoshihisa</creator><creator>Amako, Yasushi</creator><creator>Iiyama, Taku</creator><creator>Futamura, Ryusuke</creator><creator>Utsumi, Shigenori</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220205</creationdate><title>Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite</title><author>Maruyama, Kenichi ; Tanaka, Seiya ; Natori, Shun ; Bizen, Ikuya ; Amemiya, Keisuke ; Kiyanagi, Ryoji ; Nakao, Akiko ; Moriyama, Kentaro ; Ishikawa, Yoshihisa ; Amako, Yasushi ; Iiyama, Taku ; Futamura, Ryusuke ; Utsumi, Shigenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-ab3c588ca0b2e74d4a30637137b392e9b0d2477a67934efc7ddaee53abed890b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Crystals</topic><topic>Ferrimagnetism</topic><topic>Ferrites</topic><topic>Helimagnetism</topic><topic>Hexagonal ferrite</topic><topic>Magnetic phase diagram</topic><topic>Magnetization</topic><topic>Neutron diffraction</topic><topic>Neutrons</topic><topic>Paramagnetism</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>Room temperature</topic><topic>Satellite observation</topic><topic>Single crystal of Ba(Fe1−xScx)12O19</topic><topic>Temperature</topic><topic>TOF-Laue neutron diffraction</topic><topic>Transition temperature</topic><topic>Turn angle of the helix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruyama, Kenichi</creatorcontrib><creatorcontrib>Tanaka, Seiya</creatorcontrib><creatorcontrib>Natori, Shun</creatorcontrib><creatorcontrib>Bizen, Ikuya</creatorcontrib><creatorcontrib>Amemiya, Keisuke</creatorcontrib><creatorcontrib>Kiyanagi, Ryoji</creatorcontrib><creatorcontrib>Nakao, Akiko</creatorcontrib><creatorcontrib>Moriyama, Kentaro</creatorcontrib><creatorcontrib>Ishikawa, Yoshihisa</creatorcontrib><creatorcontrib>Amako, Yasushi</creatorcontrib><creatorcontrib>Iiyama, Taku</creatorcontrib><creatorcontrib>Futamura, Ryusuke</creatorcontrib><creatorcontrib>Utsumi, Shigenori</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruyama, Kenichi</au><au>Tanaka, Seiya</au><au>Natori, Shun</au><au>Bizen, Ikuya</au><au>Amemiya, Keisuke</au><au>Kiyanagi, Ryoji</au><au>Nakao, Akiko</au><au>Moriyama, Kentaro</au><au>Ishikawa, Yoshihisa</au><au>Amako, Yasushi</au><au>Iiyama, Taku</au><au>Futamura, Ryusuke</au><au>Utsumi, Shigenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-02-05</date><risdate>2022</risdate><volume>892</volume><spage>162125</spage><pages>162125-</pages><artnum>162125</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•The magnetic phase diagram of Ba(Fe1−xScx)12O19 was constructed in the T-x plane.•From the phase diagram, it was determined that helimagnetism appeared at x ≳ 0.06.•The antiferromagnetic phase appeared at x ≳ 0.19 through the coexistence region with helimagnetism.•The turn angle of the helix as a function of x and T was clarified. [Display omitted] Hexagonal ferrite Ba(Fe1−xScx)12O19 is an important magnetic oxide material in both science and engineering because it exhibits helimagnetism around room temperature (300 K). In this study, the magnetic phase diagram of Ba(Fe1−xScx)12O19 consisting of ferri-, heli-, antiferro-, and paramagnetic phases has been completed through magnetization and neutron diffraction measurements. The magnetic phase transition temperature to paramagnetism decreases with the increase in x, and the temperature at which the magnetization reaches a maximum, which corresponds to the magnetic phase transition from heli- to ferrimagnetism, is determined for low x crystals. The temperatures at which helimagnetism appears are precisely determined by observing the magnetic satellite reflection peaks in neutron diffraction at various temperatures, which characterize helimagnetism. Based on these results, the magnetic phase diagram of the Ba(Fe1−xScx)12O19 system is constructed in the T-x plane. Helimagnetism appears at x ≳ 0.06, and magnetism with antiferromagnetic components appears as the extension phase of helimagnetism at x ≳ 0.19 through the coexistence region. The turn angle ϕ0 of the helix for each x crystal is calculated from the relationship, ϕ0 = 2πδ, where δ is the incommensurability. The turn angle ϕ0 decreases with the increase in temperature for the same x crystal, and increases with the increase in x at the same temperature. Furthermore, it is found that there are clear thresholds at which ϕ0 cannot take values between 0°&lt;ϕ0 ≲ 90° and 170° ≲ ϕ0&lt; 180°.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.162125</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2022-02, Vol.892, p.162125, Article 162125
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2620965912
source Elsevier ScienceDirect Journals Complete
subjects Antiferromagnetism
Crystals
Ferrimagnetism
Ferrites
Helimagnetism
Hexagonal ferrite
Magnetic phase diagram
Magnetization
Neutron diffraction
Neutrons
Paramagnetism
Phase diagrams
Phase transitions
Room temperature
Satellite observation
Single crystal of Ba(Fe1−xScx)12O19
Temperature
TOF-Laue neutron diffraction
Transition temperature
Turn angle of the helix
title Magnetic phase diagram of helimagnetic Ba(Fe1−xScx)12O19 (0 ≤ x ≤ 0.2) hexagonal ferrite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20phase%20diagram%20of%20helimagnetic%20Ba(Fe1%E2%88%92xScx)12O19%20(0%C2%A0%E2%89%A4%C2%A0x%C2%A0%E2%89%A4%C2%A00.2)%20hexagonal%20ferrite&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Maruyama,%20Kenichi&rft.date=2022-02-05&rft.volume=892&rft.spage=162125&rft.pages=162125-&rft.artnum=162125&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.162125&rft_dat=%3Cproquest_cross%3E2620965912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620965912&rft_id=info:pmid/&rft_els_id=S0925838821035350&rfr_iscdi=true