Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism
•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotati...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2022-03, Vol.166, p.108415, Article 108415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108415 |
container_title | Mechanical systems and signal processing |
container_volume | 166 |
creator | Kudra, Grzegorz Balthazar, Jose M. Tusset, Angelo M. Wasilewski, Grzegorz Stańczyk, Bartosz Awrejcewicz, Jan |
description | •Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed.
In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity. |
doi_str_mv | 10.1016/j.ymssp.2021.108415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620963456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327021007640</els_id><sourcerecordid>2620963456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Ai8Bz10naZumBw-y6z9Y8KJHCWmSYmrb1KRd6Lc3az17mpnHewPvh9A1gQ0Bwm6bzdyFMGwoUBIVnpH8BK0IlCwhlLBTtALOeZLSAs7RRQgNAJQZsBX62M297KwKWPaynYM9Lhor14_etdjVWOLB9Hpqpw5rbw-mx9Ucxd0Wd250Hh-sjGdorTY-UV72X7gz6lP2NnSX6KyWbTBXf3ON3h8f3rbPyf716WV7v09UCmxMcmmyui6VKllGdFFWGSUAJDdFlnFq8kJSVUFZFAxYqjhwJXWd8pIozqsiLdI1uln-Dt59TyaMonGTj4WCoIxGDGmWs-hKF5fyLgRvajF420k_CwLiyFE04pejOHIUC8eYultSJhY4WONFUNb0ymjrjRqFdvbf_A95TnvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620963456</pqid></control><display><type>article</type><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</creator><creatorcontrib>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</creatorcontrib><description>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed.
In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2021.108415</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>0–1 Test ; Bifurcations ; Chaos ; Chaos theory ; D C motors ; Dahl Model ; Electric motors ; Electromechanical System ; Parameter estimation ; Passive control ; Pendulums ; Phase diagrams ; Rheological properties ; Rotational Magnetorheological Damper ; Slider mechanism ; Slider-crank mechanisms</subject><ispartof>Mechanical systems and signal processing, 2022-03, Vol.166, p.108415, Article 108415</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</citedby><cites>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2021.108415$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Kudra, Grzegorz</creatorcontrib><creatorcontrib>Balthazar, Jose M.</creatorcontrib><creatorcontrib>Tusset, Angelo M.</creatorcontrib><creatorcontrib>Wasilewski, Grzegorz</creatorcontrib><creatorcontrib>Stańczyk, Bartosz</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><title>Mechanical systems and signal processing</title><description>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed.
In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</description><subject>0–1 Test</subject><subject>Bifurcations</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>D C motors</subject><subject>Dahl Model</subject><subject>Electric motors</subject><subject>Electromechanical System</subject><subject>Parameter estimation</subject><subject>Passive control</subject><subject>Pendulums</subject><subject>Phase diagrams</subject><subject>Rheological properties</subject><subject>Rotational Magnetorheological Damper</subject><subject>Slider mechanism</subject><subject>Slider-crank mechanisms</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Ai8Bz10naZumBw-y6z9Y8KJHCWmSYmrb1KRd6Lc3az17mpnHewPvh9A1gQ0Bwm6bzdyFMGwoUBIVnpH8BK0IlCwhlLBTtALOeZLSAs7RRQgNAJQZsBX62M297KwKWPaynYM9Lhor14_etdjVWOLB9Hpqpw5rbw-mx9Ucxd0Wd250Hh-sjGdorTY-UV72X7gz6lP2NnSX6KyWbTBXf3ON3h8f3rbPyf716WV7v09UCmxMcmmyui6VKllGdFFWGSUAJDdFlnFq8kJSVUFZFAxYqjhwJXWd8pIozqsiLdI1uln-Dt59TyaMonGTj4WCoIxGDGmWs-hKF5fyLgRvajF420k_CwLiyFE04pejOHIUC8eYultSJhY4WONFUNb0ymjrjRqFdvbf_A95TnvO</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kudra, Grzegorz</creator><creator>Balthazar, Jose M.</creator><creator>Tusset, Angelo M.</creator><creator>Wasilewski, Grzegorz</creator><creator>Stańczyk, Bartosz</creator><creator>Awrejcewicz, Jan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><author>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>0–1 Test</topic><topic>Bifurcations</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>D C motors</topic><topic>Dahl Model</topic><topic>Electric motors</topic><topic>Electromechanical System</topic><topic>Parameter estimation</topic><topic>Passive control</topic><topic>Pendulums</topic><topic>Phase diagrams</topic><topic>Rheological properties</topic><topic>Rotational Magnetorheological Damper</topic><topic>Slider mechanism</topic><topic>Slider-crank mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudra, Grzegorz</creatorcontrib><creatorcontrib>Balthazar, Jose M.</creatorcontrib><creatorcontrib>Tusset, Angelo M.</creatorcontrib><creatorcontrib>Wasilewski, Grzegorz</creatorcontrib><creatorcontrib>Stańczyk, Bartosz</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudra, Grzegorz</au><au>Balthazar, Jose M.</au><au>Tusset, Angelo M.</au><au>Wasilewski, Grzegorz</au><au>Stańczyk, Bartosz</au><au>Awrejcewicz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>166</volume><spage>108415</spage><pages>108415-</pages><artnum>108415</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed.
In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2021.108415</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-3270 |
ispartof | Mechanical systems and signal processing, 2022-03, Vol.166, p.108415, Article 108415 |
issn | 0888-3270 1096-1216 |
language | eng |
recordid | cdi_proquest_journals_2620963456 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 0–1 Test Bifurcations Chaos Chaos theory D C motors Dahl Model Electric motors Electromechanical System Parameter estimation Passive control Pendulums Phase diagrams Rheological properties Rotational Magnetorheological Damper Slider mechanism Slider-crank mechanisms |
title | Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20analysis%20and%20control%20of%20a%20pendulum%20driven%20by%20a%20DC%20motor%20via%20a%20slider-crank%20mechanism&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Kudra,%20Grzegorz&rft.date=2022-03-01&rft.volume=166&rft.spage=108415&rft.pages=108415-&rft.artnum=108415&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2021.108415&rft_dat=%3Cproquest_cross%3E2620963456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620963456&rft_id=info:pmid/&rft_els_id=S0888327021007640&rfr_iscdi=true |