Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism

•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing 2022-03, Vol.166, p.108415, Article 108415
Hauptverfasser: Kudra, Grzegorz, Balthazar, Jose M., Tusset, Angelo M., Wasilewski, Grzegorz, Stańczyk, Bartosz, Awrejcewicz, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108415
container_title Mechanical systems and signal processing
container_volume 166
creator Kudra, Grzegorz
Balthazar, Jose M.
Tusset, Angelo M.
Wasilewski, Grzegorz
Stańczyk, Bartosz
Awrejcewicz, Jan
description •Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed. In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.
doi_str_mv 10.1016/j.ymssp.2021.108415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620963456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0888327021007640</els_id><sourcerecordid>2620963456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Ai8Bz10naZumBw-y6z9Y8KJHCWmSYmrb1KRd6Lc3az17mpnHewPvh9A1gQ0Bwm6bzdyFMGwoUBIVnpH8BK0IlCwhlLBTtALOeZLSAs7RRQgNAJQZsBX62M297KwKWPaynYM9Lhor14_etdjVWOLB9Hpqpw5rbw-mx9Ucxd0Wd250Hh-sjGdorTY-UV72X7gz6lP2NnSX6KyWbTBXf3ON3h8f3rbPyf716WV7v09UCmxMcmmyui6VKllGdFFWGSUAJDdFlnFq8kJSVUFZFAxYqjhwJXWd8pIozqsiLdI1uln-Dt59TyaMonGTj4WCoIxGDGmWs-hKF5fyLgRvajF420k_CwLiyFE04pejOHIUC8eYultSJhY4WONFUNb0ymjrjRqFdvbf_A95TnvO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620963456</pqid></control><display><type>article</type><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</creator><creatorcontrib>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</creatorcontrib><description>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed. In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</description><identifier>ISSN: 0888-3270</identifier><identifier>EISSN: 1096-1216</identifier><identifier>DOI: 10.1016/j.ymssp.2021.108415</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>0–1 Test ; Bifurcations ; Chaos ; Chaos theory ; D C motors ; Dahl Model ; Electric motors ; Electromechanical System ; Parameter estimation ; Passive control ; Pendulums ; Phase diagrams ; Rheological properties ; Rotational Magnetorheological Damper ; Slider mechanism ; Slider-crank mechanisms</subject><ispartof>Mechanical systems and signal processing, 2022-03, Vol.166, p.108415, Article 108415</ispartof><rights>2021 The Authors</rights><rights>Copyright Elsevier BV Mar 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</citedby><cites>FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymssp.2021.108415$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27913,27914,45984</link.rule.ids></links><search><creatorcontrib>Kudra, Grzegorz</creatorcontrib><creatorcontrib>Balthazar, Jose M.</creatorcontrib><creatorcontrib>Tusset, Angelo M.</creatorcontrib><creatorcontrib>Wasilewski, Grzegorz</creatorcontrib><creatorcontrib>Stańczyk, Bartosz</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><title>Mechanical systems and signal processing</title><description>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed. In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</description><subject>0–1 Test</subject><subject>Bifurcations</subject><subject>Chaos</subject><subject>Chaos theory</subject><subject>D C motors</subject><subject>Dahl Model</subject><subject>Electric motors</subject><subject>Electromechanical System</subject><subject>Parameter estimation</subject><subject>Passive control</subject><subject>Pendulums</subject><subject>Phase diagrams</subject><subject>Rheological properties</subject><subject>Rotational Magnetorheological Damper</subject><subject>Slider mechanism</subject><subject>Slider-crank mechanisms</subject><issn>0888-3270</issn><issn>1096-1216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Ai8Bz10naZumBw-y6z9Y8KJHCWmSYmrb1KRd6Lc3az17mpnHewPvh9A1gQ0Bwm6bzdyFMGwoUBIVnpH8BK0IlCwhlLBTtALOeZLSAs7RRQgNAJQZsBX62M297KwKWPaynYM9Lhor14_etdjVWOLB9Hpqpw5rbw-mx9Ucxd0Wd250Hh-sjGdorTY-UV72X7gz6lP2NnSX6KyWbTBXf3ON3h8f3rbPyf716WV7v09UCmxMcmmyui6VKllGdFFWGSUAJDdFlnFq8kJSVUFZFAxYqjhwJXWd8pIozqsiLdI1uln-Dt59TyaMonGTj4WCoIxGDGmWs-hKF5fyLgRvajF420k_CwLiyFE04pejOHIUC8eYultSJhY4WONFUNb0ymjrjRqFdvbf_A95TnvO</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Kudra, Grzegorz</creator><creator>Balthazar, Jose M.</creator><creator>Tusset, Angelo M.</creator><creator>Wasilewski, Grzegorz</creator><creator>Stańczyk, Bartosz</creator><creator>Awrejcewicz, Jan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220301</creationdate><title>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</title><author>Kudra, Grzegorz ; Balthazar, Jose M. ; Tusset, Angelo M. ; Wasilewski, Grzegorz ; Stańczyk, Bartosz ; Awrejcewicz, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-5ae4ff9cc9641d79b4210015e74482e57a2cb09776063c808cadf3891c88b7373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>0–1 Test</topic><topic>Bifurcations</topic><topic>Chaos</topic><topic>Chaos theory</topic><topic>D C motors</topic><topic>Dahl Model</topic><topic>Electric motors</topic><topic>Electromechanical System</topic><topic>Parameter estimation</topic><topic>Passive control</topic><topic>Pendulums</topic><topic>Phase diagrams</topic><topic>Rheological properties</topic><topic>Rotational Magnetorheological Damper</topic><topic>Slider mechanism</topic><topic>Slider-crank mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kudra, Grzegorz</creatorcontrib><creatorcontrib>Balthazar, Jose M.</creatorcontrib><creatorcontrib>Tusset, Angelo M.</creatorcontrib><creatorcontrib>Wasilewski, Grzegorz</creatorcontrib><creatorcontrib>Stańczyk, Bartosz</creatorcontrib><creatorcontrib>Awrejcewicz, Jan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mechanical systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kudra, Grzegorz</au><au>Balthazar, Jose M.</au><au>Tusset, Angelo M.</au><au>Wasilewski, Grzegorz</au><au>Stańczyk, Bartosz</au><au>Awrejcewicz, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism</atitle><jtitle>Mechanical systems and signal processing</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>166</volume><spage>108415</spage><pages>108415-</pages><artnum>108415</artnum><issn>0888-3270</issn><eissn>1096-1216</eissn><abstract>•Experimental and mathematical models of a pendulum driven by DC motors are developed.•Good agreement between numerical simulations and experimental data is obtained.•Bifurcation dynamics is investigated by experimental and numerical methods.•Passive control of chaos with magnetic rheological rotational damper is proposed. In the present work, we deal with a dynamical analysis and passive control of chaos with magnetic rheological (MR) rotational damper in a pendulum driven by a DC motor via slider mechanism. A mathematical model for electromechanical system composed of a pendulum driven horizontally by through a DC motor and a slider-crank mechanism is presented and the parameters are estimated based on experimental data. Numerical and experimental results demonstrate that for certain values of the motor input voltage they can lead the system to chaotic behavior. For dynamic analysis, bifurcation diagrams, Poincaré sections, phase diagrams and 0–1 test are considered. In order to suppress the chaotic behavior, it is proposed to include MR rotational damper, as a passive control. In the case of the passive rotational MR damper, the influence of the introduction of the MR damper in a pendulum is performed considering the bifurcation diagrams. The numerical results show that the introduction of a passive rotational MR damper suppresses the chaotic behavior of the system. Additionally it is shown that it is possible to keep the pendulum oscillating with periodic behavior using the rotational MR damper with energizing discontinuity.</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ymssp.2021.108415</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-3270
ispartof Mechanical systems and signal processing, 2022-03, Vol.166, p.108415, Article 108415
issn 0888-3270
1096-1216
language eng
recordid cdi_proquest_journals_2620963456
source ScienceDirect Journals (5 years ago - present)
subjects 0–1 Test
Bifurcations
Chaos
Chaos theory
D C motors
Dahl Model
Electric motors
Electromechanical System
Parameter estimation
Passive control
Pendulums
Phase diagrams
Rheological properties
Rotational Magnetorheological Damper
Slider mechanism
Slider-crank mechanisms
title Dynamics analysis and control of a pendulum driven by a DC motor via a slider-crank mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20analysis%20and%20control%20of%20a%20pendulum%20driven%20by%20a%20DC%20motor%20via%20a%20slider-crank%20mechanism&rft.jtitle=Mechanical%20systems%20and%20signal%20processing&rft.au=Kudra,%20Grzegorz&rft.date=2022-03-01&rft.volume=166&rft.spage=108415&rft.pages=108415-&rft.artnum=108415&rft.issn=0888-3270&rft.eissn=1096-1216&rft_id=info:doi/10.1016/j.ymssp.2021.108415&rft_dat=%3Cproquest_cross%3E2620963456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620963456&rft_id=info:pmid/&rft_els_id=S0888327021007640&rfr_iscdi=true