Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials

Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022, Vol.33 (1), p.406-415
Hauptverfasser: Zhang, Kai, Liu, Xiangchun, Hou, Shan, Qiang, Li, Wu, Qi, Yang, Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 415
container_issue 1
container_start_page 406
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Zhang, Kai
Liu, Xiangchun
Hou, Shan
Qiang, Li
Wu, Qi
Yang, Zhe
description Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO 4 nano materials were synthesized via doping Bi 3+ and Cu 2+ to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO 4 nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO 4 reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO 4 ; Cu-ZnWO 4 has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO 4 reaches 99.4% after 90 min of UV irradiation. Cu 2+ doping can adjust the band gap of ZnWO 4 , resulting in the redshift of its absorption edge.
doi_str_mv 10.1007/s10854-021-07310-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620905221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620905221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWGCuDr3EyQsVNqlQGEIjFchwbUjVxsN2hPA3PwpNhCBIb07_8l3M-AI4JPiUYy7NIcCk4wpQgLBnBqNgBEyIkQ7ykT7tggishEReU7oODGFcY44KzcgLu7mxwPnS6Nxb6IbVd-65T63voHbxo2QzqvoHzDZ19fqDGD7aBz_3jksPh1SdvdNLrbWoN7HSyodXreAj2XBZ79KtT8HB1eT-_QYvl9e38fIEM5VVCgtu6rpvasYYXVVkxiqWjnBte5fu1lA2ta2IrWkjHqDVGlJSURLhGcOkcZVNwMvYOwb9tbExq5Tehz5OKFhRXOP9KsouOLhN8jME6NYS202GrCFbf5NRITmVy6oecKnKIjaGYzf2LDX_V_6S-AMVPcIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620905221</pqid></control><display><type>article</type><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</creator><creatorcontrib>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</creatorcontrib><description>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO 4 nano materials were synthesized via doping Bi 3+ and Cu 2+ to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO 4 nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO 4 reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO 4 ; Cu-ZnWO 4 has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO 4 reaches 99.4% after 90 min of UV irradiation. Cu 2+ doping can adjust the band gap of ZnWO 4 , resulting in the redshift of its absorption edge.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07310-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Doping ; Efficiency ; Energy gap ; Irradiation ; Materials Science ; Methylene blue ; Optical and Electronic Materials ; Optimization ; Photocatalysis ; Photodegradation ; Pollutants ; Quantum efficiency ; Red shift ; Ultraviolet radiation ; Zinc tungstates</subject><ispartof>Journal of materials science. Materials in electronics, 2022, Vol.33 (1), p.406-415</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</citedby><cites>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</cites><orcidid>0000-0001-5822-6094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07310-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07310-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Xiangchun</creatorcontrib><creatorcontrib>Hou, Shan</creatorcontrib><creatorcontrib>Qiang, Li</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO 4 nano materials were synthesized via doping Bi 3+ and Cu 2+ to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO 4 nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO 4 reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO 4 ; Cu-ZnWO 4 has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO 4 reaches 99.4% after 90 min of UV irradiation. Cu 2+ doping can adjust the band gap of ZnWO 4 , resulting in the redshift of its absorption edge.</description><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Irradiation</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Pollutants</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>Ultraviolet radiation</subject><subject>Zinc tungstates</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyWGCuDr3EyQsVNqlQGEIjFchwbUjVxsN2hPA3PwpNhCBIb07_8l3M-AI4JPiUYy7NIcCk4wpQgLBnBqNgBEyIkQ7ykT7tggishEReU7oODGFcY44KzcgLu7mxwPnS6Nxb6IbVd-65T63voHbxo2QzqvoHzDZ19fqDGD7aBz_3jksPh1SdvdNLrbWoN7HSyodXreAj2XBZ79KtT8HB1eT-_QYvl9e38fIEM5VVCgtu6rpvasYYXVVkxiqWjnBte5fu1lA2ta2IrWkjHqDVGlJSURLhGcOkcZVNwMvYOwb9tbExq5Tehz5OKFhRXOP9KsouOLhN8jME6NYS202GrCFbf5NRITmVy6oecKnKIjaGYzf2LDX_V_6S-AMVPcIA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Kai</creator><creator>Liu, Xiangchun</creator><creator>Hou, Shan</creator><creator>Qiang, Li</creator><creator>Wu, Qi</creator><creator>Yang, Zhe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5822-6094</orcidid></search><sort><creationdate>2022</creationdate><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><author>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Irradiation</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Pollutants</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>Ultraviolet radiation</topic><topic>Zinc tungstates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Xiangchun</creatorcontrib><creatorcontrib>Hou, Shan</creatorcontrib><creatorcontrib>Qiang, Li</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Liu, Xiangchun</au><au>Hou, Shan</au><au>Qiang, Li</au><au>Wu, Qi</au><au>Yang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>1</issue><spage>406</spage><epage>415</epage><pages>406-415</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO 4 nano materials were synthesized via doping Bi 3+ and Cu 2+ to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO 4 nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO 4 reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO 4 ; Cu-ZnWO 4 has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO 4 reaches 99.4% after 90 min of UV irradiation. Cu 2+ doping can adjust the band gap of ZnWO 4 , resulting in the redshift of its absorption edge.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07310-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5822-6094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022, Vol.33 (1), p.406-415
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2620905221
source SpringerLink Journals - AutoHoldings
subjects Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Doping
Efficiency
Energy gap
Irradiation
Materials Science
Methylene blue
Optical and Electronic Materials
Optimization
Photocatalysis
Photodegradation
Pollutants
Quantum efficiency
Red shift
Ultraviolet radiation
Zinc tungstates
title Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20optimization%20of%20Bi3+%20and%20Cu2+%C2%A0-doped%20ZnWO4%20photocatalytic%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Kai&rft.date=2022&rft.volume=33&rft.issue=1&rft.spage=406&rft.epage=415&rft.pages=406-415&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07310-6&rft_dat=%3Cproquest_cross%3E2620905221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620905221&rft_id=info:pmid/&rfr_iscdi=true