Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials
Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO 4 photocatalyst is limited by its wide band gap and low qu...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2022, Vol.33 (1), p.406-415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 1 |
container_start_page | 406 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 33 |
creator | Zhang, Kai Liu, Xiangchun Hou, Shan Qiang, Li Wu, Qi Yang, Zhe |
description | Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO
4
photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO
4
nano materials were synthesized via doping Bi
3+
and Cu
2+
to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO
4
nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO
4
reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO
4
; Cu-ZnWO
4
has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO
4
reaches 99.4% after 90 min of UV irradiation. Cu
2+
doping can adjust the band gap of ZnWO
4
, resulting in the redshift of its absorption edge. |
doi_str_mv | 10.1007/s10854-021-07310-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620905221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620905221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWGCuDr3EyQsVNqlQGEIjFchwbUjVxsN2hPA3PwpNhCBIb07_8l3M-AI4JPiUYy7NIcCk4wpQgLBnBqNgBEyIkQ7ykT7tggishEReU7oODGFcY44KzcgLu7mxwPnS6Nxb6IbVd-65T63voHbxo2QzqvoHzDZ19fqDGD7aBz_3jksPh1SdvdNLrbWoN7HSyodXreAj2XBZ79KtT8HB1eT-_QYvl9e38fIEM5VVCgtu6rpvasYYXVVkxiqWjnBte5fu1lA2ta2IrWkjHqDVGlJSURLhGcOkcZVNwMvYOwb9tbExq5Tehz5OKFhRXOP9KsouOLhN8jME6NYS202GrCFbf5NRITmVy6oecKnKIjaGYzf2LDX_V_6S-AMVPcIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620905221</pqid></control><display><type>article</type><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</creator><creatorcontrib>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</creatorcontrib><description>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO
4
photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO
4
nano materials were synthesized via doping Bi
3+
and Cu
2+
to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO
4
nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO
4
reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO
4
; Cu-ZnWO
4
has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO
4
reaches 99.4% after 90 min of UV irradiation. Cu
2+
doping can adjust the band gap of ZnWO
4
, resulting in the redshift of its absorption edge.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07310-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Doping ; Efficiency ; Energy gap ; Irradiation ; Materials Science ; Methylene blue ; Optical and Electronic Materials ; Optimization ; Photocatalysis ; Photodegradation ; Pollutants ; Quantum efficiency ; Red shift ; Ultraviolet radiation ; Zinc tungstates</subject><ispartof>Journal of materials science. Materials in electronics, 2022, Vol.33 (1), p.406-415</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</citedby><cites>FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</cites><orcidid>0000-0001-5822-6094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-07310-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-07310-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Xiangchun</creatorcontrib><creatorcontrib>Hou, Shan</creatorcontrib><creatorcontrib>Qiang, Li</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO
4
photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO
4
nano materials were synthesized via doping Bi
3+
and Cu
2+
to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO
4
nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO
4
reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO
4
; Cu-ZnWO
4
has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO
4
reaches 99.4% after 90 min of UV irradiation. Cu
2+
doping can adjust the band gap of ZnWO
4
, resulting in the redshift of its absorption edge.</description><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Doping</subject><subject>Efficiency</subject><subject>Energy gap</subject><subject>Irradiation</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Pollutants</subject><subject>Quantum efficiency</subject><subject>Red shift</subject><subject>Ultraviolet radiation</subject><subject>Zinc tungstates</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyWGCuDr3EyQsVNqlQGEIjFchwbUjVxsN2hPA3PwpNhCBIb07_8l3M-AI4JPiUYy7NIcCk4wpQgLBnBqNgBEyIkQ7ykT7tggishEReU7oODGFcY44KzcgLu7mxwPnS6Nxb6IbVd-65T63voHbxo2QzqvoHzDZ19fqDGD7aBz_3jksPh1SdvdNLrbWoN7HSyodXreAj2XBZ79KtT8HB1eT-_QYvl9e38fIEM5VVCgtu6rpvasYYXVVkxiqWjnBte5fu1lA2ta2IrWkjHqDVGlJSURLhGcOkcZVNwMvYOwb9tbExq5Tehz5OKFhRXOP9KsouOLhN8jME6NYS202GrCFbf5NRITmVy6oecKnKIjaGYzf2LDX_V_6S-AMVPcIA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Kai</creator><creator>Liu, Xiangchun</creator><creator>Hou, Shan</creator><creator>Qiang, Li</creator><creator>Wu, Qi</creator><creator>Yang, Zhe</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5822-6094</orcidid></search><sort><creationdate>2022</creationdate><title>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</title><author>Zhang, Kai ; Liu, Xiangchun ; Hou, Shan ; Qiang, Li ; Wu, Qi ; Yang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-54ebbbdbf3d469893207f244c49731a77d2bb1e9267f32ecc5821815fd547ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Doping</topic><topic>Efficiency</topic><topic>Energy gap</topic><topic>Irradiation</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Pollutants</topic><topic>Quantum efficiency</topic><topic>Red shift</topic><topic>Ultraviolet radiation</topic><topic>Zinc tungstates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Liu, Xiangchun</creatorcontrib><creatorcontrib>Hou, Shan</creatorcontrib><creatorcontrib>Qiang, Li</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Liu, Xiangchun</au><au>Hou, Shan</au><au>Qiang, Li</au><au>Wu, Qi</au><au>Yang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>1</issue><spage>406</spage><epage>415</epage><pages>406-415</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Owing to the increasing problem of environmental pollution, there is an urgent need for catalytic materials that can completely decompose organic pollutants into environmentally friendly substances. However, the practical application of ZnWO
4
photocatalyst is limited by its wide band gap and low quantum efficiency. ZnWO
4
nano materials were synthesized via doping Bi
3+
and Cu
2+
to enhance their photocatalytic activity by hydrothermal method at 180 °C in this paper. Methylene blue (MB) as the target to degrade organic pollutants, the UV degradation ability of the system was investigated, and ZnWO
4
nano-doped material with the best photocatalytic performance was obtained. The results show that the photodegradation efficiency of 3 mol% Bi-ZnWO
4
reaches 99% within 120 min of UV irradiation, which is 1.3 times of that of pure ZnWO
4
; Cu-ZnWO
4
has excellent photocatalytic properties, and the photodegradation efficiency of 3 mol% Cu-ZnWO
4
reaches 99.4% after 90 min of UV irradiation. Cu
2+
doping can adjust the band gap of ZnWO
4
, resulting in the redshift of its absorption edge.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07310-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5822-6094</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2022, Vol.33 (1), p.406-415 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2620905221 |
source | SpringerLink Journals - AutoHoldings |
subjects | Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Copper Doping Efficiency Energy gap Irradiation Materials Science Methylene blue Optical and Electronic Materials Optimization Photocatalysis Photodegradation Pollutants Quantum efficiency Red shift Ultraviolet radiation Zinc tungstates |
title | Performance optimization of Bi3+ and Cu2+ -doped ZnWO4 photocatalytic materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20optimization%20of%20Bi3+%20and%20Cu2+%C2%A0-doped%20ZnWO4%20photocatalytic%20materials&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhang,%20Kai&rft.date=2022&rft.volume=33&rft.issue=1&rft.spage=406&rft.epage=415&rft.pages=406-415&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07310-6&rft_dat=%3Cproquest_cross%3E2620905221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620905221&rft_id=info:pmid/&rfr_iscdi=true |