Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant

An efficacious and reproducible in vitro regeneration technique for safflower was established using varying concentrations and composition of plant growth regulators (PGRs) supplemented Murashige and Skoog (MS) medium. Successful in vitro seed germination in half strength MS (H-MS) with 1.4 µM GA 3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2022-02, Vol.148 (2), p.403-418
Hauptverfasser: Ejaz, Bushra, Mujib, A., Mamgain, Jyoti, Malik, Moien Qadir, Syeed, Rukaya, Gulzar, Basit, Bansal, Yashika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 2
container_start_page 403
container_title Plant cell, tissue and organ culture
container_volume 148
creator Ejaz, Bushra
Mujib, A.
Mamgain, Jyoti
Malik, Moien Qadir
Syeed, Rukaya
Gulzar, Basit
Bansal, Yashika
description An efficacious and reproducible in vitro regeneration technique for safflower was established using varying concentrations and composition of plant growth regulators (PGRs) supplemented Murashige and Skoog (MS) medium. Successful in vitro seed germination in half strength MS (H-MS) with 1.4 µM GA 3 resulted in procurement of sterile explants (cotyledons, apical meristems) for in vitro study. Callogenesis (2.2 µM BAP + 2.7 µM NAA), indirect organogenesis of shoot buds (0.54 µM NAA + 9.08 µM TDZ), somatic embryogenesis (2.2 µM BAP + 5.4 µM NAA) and somatic embryo germinated plantlets (H-MS + 1.4 µM GA 3  + 2.2 µM BAP + 5.4 µM NAA) were successfully obtained. Histological study and scanning electron micrographs of embryogenic callus revealed pre-globular, heart-shaped and torpedo stages of dicot embryogeny. H-MS + 8 µM NAA showed maximum rhizogenic response with a mean root and shoot length of 17.5 mm and 48.50 mm respectively in 2.2 µM BAP + 0.54 µM NAA bearing an average of 9 capitula per plantlet with 70% post transplantation survival rate. True to type nature of the regenerates was confirmed using Start Codon Targeted (SCoT) marker, exhibiting 100% and 97.3% monomorphic bands for direct and somatic embryo regenerated plants respectively. Flow cytometry method (FCM) was employed for 2C DNA content analysis. The histogram peaks of 2C nuclear DNA content of in vitro regenerated safflower (direct and embryo derived) were similar to the peak of field grown donor plant. 2C nuclear DNA content of field grown, direct and somatic embryo regenerated C. tinctorius was 2.65 ± 0.04 pg, 2.62 ± 0.06 pg and 2.68 ± 0.04 pg respectively, further verifying genetic homogeneity. All things considered, the above protocol is insusceptible to genetic alteration and can be used for large scale production and sustainable utilization of desired genotype. Key message An efficient, reproducible in vitro regeneration protocol was achieved for safflower via direct, callus mediated organogenesis and somatic embryogenesis. Histology and SEM study revealed typical dicot embryogenic stages. SCoT molecular marker and flow cytometric 2C genome size analysis were further applied for evaluating genetic fidelity of in vitro regenerated safflower.
doi_str_mv 10.1007/s11240-021-02197-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620837689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620837689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d7cc67d11e81bc69463c41abe53fa045bfc2ab215d9897b2d07e150499ecb2673</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhiMEEkvhBTiNxDnFdhI74YYiKEgr9UA5W44z6bokdvB424a3483wdpG4cbA81nz_P9b8RfGWs0vOmHpPnIualUzw0-lU-fis2PFGVWXD6vp5sWNcqlK2jXpZvCK6Y4zJqua74ncfljXiAT25ewTn4d6lGCDiLXqMJrnggdJx3ODBpQN868MNLCb-wAiGyFHCEewcvJkzZgY3u7SdOki0oE9g_AjTHB7AbiksmKKzkK1zCeR-Ye6becs-ECboTUwHsxwJkvM2hehyub_8kCFwyxpiMtlxwdFZdxq4zvn9ungxmZnwzd_7ovj--dNN_6XcX1997T_uS1vxLpWjslaqkXNs-WBlV8vK1twM2FSTYXUzTFaYQfBm7NpODWJkCnleXtehHYRU1UXx7uy7xvDziJT0XTjG_A3SQgrWVkq2XabEmbIxEEWc9Bpd3temOdOnqPQ5Kp1j0k9R6ccsqs4iyrC_xfjP-j-qP9gDnUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620837689</pqid></control><display><type>article</type><title>Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ejaz, Bushra ; Mujib, A. ; Mamgain, Jyoti ; Malik, Moien Qadir ; Syeed, Rukaya ; Gulzar, Basit ; Bansal, Yashika</creator><creatorcontrib>Ejaz, Bushra ; Mujib, A. ; Mamgain, Jyoti ; Malik, Moien Qadir ; Syeed, Rukaya ; Gulzar, Basit ; Bansal, Yashika</creatorcontrib><description>An efficacious and reproducible in vitro regeneration technique for safflower was established using varying concentrations and composition of plant growth regulators (PGRs) supplemented Murashige and Skoog (MS) medium. Successful in vitro seed germination in half strength MS (H-MS) with 1.4 µM GA 3 resulted in procurement of sterile explants (cotyledons, apical meristems) for in vitro study. Callogenesis (2.2 µM BAP + 2.7 µM NAA), indirect organogenesis of shoot buds (0.54 µM NAA + 9.08 µM TDZ), somatic embryogenesis (2.2 µM BAP + 5.4 µM NAA) and somatic embryo germinated plantlets (H-MS + 1.4 µM GA 3  + 2.2 µM BAP + 5.4 µM NAA) were successfully obtained. Histological study and scanning electron micrographs of embryogenic callus revealed pre-globular, heart-shaped and torpedo stages of dicot embryogeny. H-MS + 8 µM NAA showed maximum rhizogenic response with a mean root and shoot length of 17.5 mm and 48.50 mm respectively in 2.2 µM BAP + 0.54 µM NAA bearing an average of 9 capitula per plantlet with 70% post transplantation survival rate. True to type nature of the regenerates was confirmed using Start Codon Targeted (SCoT) marker, exhibiting 100% and 97.3% monomorphic bands for direct and somatic embryo regenerated plants respectively. Flow cytometry method (FCM) was employed for 2C DNA content analysis. The histogram peaks of 2C nuclear DNA content of in vitro regenerated safflower (direct and embryo derived) were similar to the peak of field grown donor plant. 2C nuclear DNA content of field grown, direct and somatic embryo regenerated C. tinctorius was 2.65 ± 0.04 pg, 2.62 ± 0.06 pg and 2.68 ± 0.04 pg respectively, further verifying genetic homogeneity. All things considered, the above protocol is insusceptible to genetic alteration and can be used for large scale production and sustainable utilization of desired genotype. Key message An efficient, reproducible in vitro regeneration protocol was achieved for safflower via direct, callus mediated organogenesis and somatic embryogenesis. Histology and SEM study revealed typical dicot embryogenic stages. SCoT molecular marker and flow cytometric 2C genome size analysis were further applied for evaluating genetic fidelity of in vitro regenerated safflower.</description><identifier>ISSN: 0167-6857</identifier><identifier>EISSN: 1573-5044</identifier><identifier>DOI: 10.1007/s11240-021-02197-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Callus ; Carthamus tinctorius ; Content analysis ; Cotyledons ; Deoxyribonucleic acid ; DNA ; Electron micrographs ; Embryonic growth stage ; Embryos ; Explants ; Flow cytometry ; Flow stability ; Genomes ; Genotypes ; Germination ; Growth regulators ; Herbal medicine ; Histograms ; Histology ; Homogeneity ; Life Sciences ; Markers ; Medicinal plants ; Meristems ; Organogenesis ; Original Article ; Plant Genetics and Genomics ; Plant growth ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Plantlets ; Regeneration ; Seed germination ; Somatic embryogenesis ; Stability analysis ; Survival ; Transplantation</subject><ispartof>Plant cell, tissue and organ culture, 2022-02, Vol.148 (2), p.403-418</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d7cc67d11e81bc69463c41abe53fa045bfc2ab215d9897b2d07e150499ecb2673</citedby><cites>FETCH-LOGICAL-c319t-d7cc67d11e81bc69463c41abe53fa045bfc2ab215d9897b2d07e150499ecb2673</cites><orcidid>0000-0002-4104-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11240-021-02197-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11240-021-02197-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ejaz, Bushra</creatorcontrib><creatorcontrib>Mujib, A.</creatorcontrib><creatorcontrib>Mamgain, Jyoti</creatorcontrib><creatorcontrib>Malik, Moien Qadir</creatorcontrib><creatorcontrib>Syeed, Rukaya</creatorcontrib><creatorcontrib>Gulzar, Basit</creatorcontrib><creatorcontrib>Bansal, Yashika</creatorcontrib><title>Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant</title><title>Plant cell, tissue and organ culture</title><addtitle>Plant Cell Tiss Organ Cult</addtitle><description>An efficacious and reproducible in vitro regeneration technique for safflower was established using varying concentrations and composition of plant growth regulators (PGRs) supplemented Murashige and Skoog (MS) medium. Successful in vitro seed germination in half strength MS (H-MS) with 1.4 µM GA 3 resulted in procurement of sterile explants (cotyledons, apical meristems) for in vitro study. Callogenesis (2.2 µM BAP + 2.7 µM NAA), indirect organogenesis of shoot buds (0.54 µM NAA + 9.08 µM TDZ), somatic embryogenesis (2.2 µM BAP + 5.4 µM NAA) and somatic embryo germinated plantlets (H-MS + 1.4 µM GA 3  + 2.2 µM BAP + 5.4 µM NAA) were successfully obtained. Histological study and scanning electron micrographs of embryogenic callus revealed pre-globular, heart-shaped and torpedo stages of dicot embryogeny. H-MS + 8 µM NAA showed maximum rhizogenic response with a mean root and shoot length of 17.5 mm and 48.50 mm respectively in 2.2 µM BAP + 0.54 µM NAA bearing an average of 9 capitula per plantlet with 70% post transplantation survival rate. True to type nature of the regenerates was confirmed using Start Codon Targeted (SCoT) marker, exhibiting 100% and 97.3% monomorphic bands for direct and somatic embryo regenerated plants respectively. Flow cytometry method (FCM) was employed for 2C DNA content analysis. The histogram peaks of 2C nuclear DNA content of in vitro regenerated safflower (direct and embryo derived) were similar to the peak of field grown donor plant. 2C nuclear DNA content of field grown, direct and somatic embryo regenerated C. tinctorius was 2.65 ± 0.04 pg, 2.62 ± 0.06 pg and 2.68 ± 0.04 pg respectively, further verifying genetic homogeneity. All things considered, the above protocol is insusceptible to genetic alteration and can be used for large scale production and sustainable utilization of desired genotype. Key message An efficient, reproducible in vitro regeneration protocol was achieved for safflower via direct, callus mediated organogenesis and somatic embryogenesis. Histology and SEM study revealed typical dicot embryogenic stages. SCoT molecular marker and flow cytometric 2C genome size analysis were further applied for evaluating genetic fidelity of in vitro regenerated safflower.</description><subject>Biomedical and Life Sciences</subject><subject>Callus</subject><subject>Carthamus tinctorius</subject><subject>Content analysis</subject><subject>Cotyledons</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electron micrographs</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Explants</subject><subject>Flow cytometry</subject><subject>Flow stability</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Growth regulators</subject><subject>Herbal medicine</subject><subject>Histograms</subject><subject>Histology</subject><subject>Homogeneity</subject><subject>Life Sciences</subject><subject>Markers</subject><subject>Medicinal plants</subject><subject>Meristems</subject><subject>Organogenesis</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Plant growth</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Plantlets</subject><subject>Regeneration</subject><subject>Seed germination</subject><subject>Somatic embryogenesis</subject><subject>Stability analysis</subject><subject>Survival</subject><subject>Transplantation</subject><issn>0167-6857</issn><issn>1573-5044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFu1DAQhiMEEkvhBTiNxDnFdhI74YYiKEgr9UA5W44z6bokdvB424a3483wdpG4cbA81nz_P9b8RfGWs0vOmHpPnIualUzw0-lU-fis2PFGVWXD6vp5sWNcqlK2jXpZvCK6Y4zJqua74ncfljXiAT25ewTn4d6lGCDiLXqMJrnggdJx3ODBpQN868MNLCb-wAiGyFHCEewcvJkzZgY3u7SdOki0oE9g_AjTHB7AbiksmKKzkK1zCeR-Ye6becs-ECboTUwHsxwJkvM2hehyub_8kCFwyxpiMtlxwdFZdxq4zvn9ungxmZnwzd_7ovj--dNN_6XcX1997T_uS1vxLpWjslaqkXNs-WBlV8vK1twM2FSTYXUzTFaYQfBm7NpODWJkCnleXtehHYRU1UXx7uy7xvDziJT0XTjG_A3SQgrWVkq2XabEmbIxEEWc9Bpd3temOdOnqPQ5Kp1j0k9R6ccsqs4iyrC_xfjP-j-qP9gDnUo</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ejaz, Bushra</creator><creator>Mujib, A.</creator><creator>Mamgain, Jyoti</creator><creator>Malik, Moien Qadir</creator><creator>Syeed, Rukaya</creator><creator>Gulzar, Basit</creator><creator>Bansal, Yashika</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4104-6887</orcidid></search><sort><creationdate>20220201</creationdate><title>Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant</title><author>Ejaz, Bushra ; Mujib, A. ; Mamgain, Jyoti ; Malik, Moien Qadir ; Syeed, Rukaya ; Gulzar, Basit ; Bansal, Yashika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d7cc67d11e81bc69463c41abe53fa045bfc2ab215d9897b2d07e150499ecb2673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical and Life Sciences</topic><topic>Callus</topic><topic>Carthamus tinctorius</topic><topic>Content analysis</topic><topic>Cotyledons</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electron micrographs</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Explants</topic><topic>Flow cytometry</topic><topic>Flow stability</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Growth regulators</topic><topic>Herbal medicine</topic><topic>Histograms</topic><topic>Histology</topic><topic>Homogeneity</topic><topic>Life Sciences</topic><topic>Markers</topic><topic>Medicinal plants</topic><topic>Meristems</topic><topic>Organogenesis</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Plant growth</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Plantlets</topic><topic>Regeneration</topic><topic>Seed germination</topic><topic>Somatic embryogenesis</topic><topic>Stability analysis</topic><topic>Survival</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ejaz, Bushra</creatorcontrib><creatorcontrib>Mujib, A.</creatorcontrib><creatorcontrib>Mamgain, Jyoti</creatorcontrib><creatorcontrib>Malik, Moien Qadir</creatorcontrib><creatorcontrib>Syeed, Rukaya</creatorcontrib><creatorcontrib>Gulzar, Basit</creatorcontrib><creatorcontrib>Bansal, Yashika</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Plant cell, tissue and organ culture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ejaz, Bushra</au><au>Mujib, A.</au><au>Mamgain, Jyoti</au><au>Malik, Moien Qadir</au><au>Syeed, Rukaya</au><au>Gulzar, Basit</au><au>Bansal, Yashika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant</atitle><jtitle>Plant cell, tissue and organ culture</jtitle><stitle>Plant Cell Tiss Organ Cult</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>148</volume><issue>2</issue><spage>403</spage><epage>418</epage><pages>403-418</pages><issn>0167-6857</issn><eissn>1573-5044</eissn><abstract>An efficacious and reproducible in vitro regeneration technique for safflower was established using varying concentrations and composition of plant growth regulators (PGRs) supplemented Murashige and Skoog (MS) medium. Successful in vitro seed germination in half strength MS (H-MS) with 1.4 µM GA 3 resulted in procurement of sterile explants (cotyledons, apical meristems) for in vitro study. Callogenesis (2.2 µM BAP + 2.7 µM NAA), indirect organogenesis of shoot buds (0.54 µM NAA + 9.08 µM TDZ), somatic embryogenesis (2.2 µM BAP + 5.4 µM NAA) and somatic embryo germinated plantlets (H-MS + 1.4 µM GA 3  + 2.2 µM BAP + 5.4 µM NAA) were successfully obtained. Histological study and scanning electron micrographs of embryogenic callus revealed pre-globular, heart-shaped and torpedo stages of dicot embryogeny. H-MS + 8 µM NAA showed maximum rhizogenic response with a mean root and shoot length of 17.5 mm and 48.50 mm respectively in 2.2 µM BAP + 0.54 µM NAA bearing an average of 9 capitula per plantlet with 70% post transplantation survival rate. True to type nature of the regenerates was confirmed using Start Codon Targeted (SCoT) marker, exhibiting 100% and 97.3% monomorphic bands for direct and somatic embryo regenerated plants respectively. Flow cytometry method (FCM) was employed for 2C DNA content analysis. The histogram peaks of 2C nuclear DNA content of in vitro regenerated safflower (direct and embryo derived) were similar to the peak of field grown donor plant. 2C nuclear DNA content of field grown, direct and somatic embryo regenerated C. tinctorius was 2.65 ± 0.04 pg, 2.62 ± 0.06 pg and 2.68 ± 0.04 pg respectively, further verifying genetic homogeneity. All things considered, the above protocol is insusceptible to genetic alteration and can be used for large scale production and sustainable utilization of desired genotype. Key message An efficient, reproducible in vitro regeneration protocol was achieved for safflower via direct, callus mediated organogenesis and somatic embryogenesis. Histology and SEM study revealed typical dicot embryogenic stages. SCoT molecular marker and flow cytometric 2C genome size analysis were further applied for evaluating genetic fidelity of in vitro regenerated safflower.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11240-021-02197-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4104-6887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6857
ispartof Plant cell, tissue and organ culture, 2022-02, Vol.148 (2), p.403-418
issn 0167-6857
1573-5044
language eng
recordid cdi_proquest_journals_2620837689
source SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Callus
Carthamus tinctorius
Content analysis
Cotyledons
Deoxyribonucleic acid
DNA
Electron micrographs
Embryonic growth stage
Embryos
Explants
Flow cytometry
Flow stability
Genomes
Genotypes
Germination
Growth regulators
Herbal medicine
Histograms
Histology
Homogeneity
Life Sciences
Markers
Medicinal plants
Meristems
Organogenesis
Original Article
Plant Genetics and Genomics
Plant growth
Plant Pathology
Plant Physiology
Plant Sciences
Plantlets
Regeneration
Seed germination
Somatic embryogenesis
Stability analysis
Survival
Transplantation
title Comprehensive in vitro regeneration study with SCoT marker assisted clonal stability assessment and flow cytometric genome size analysis of Carthamus tinctorius L.: an important medicinal plant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20in%20vitro%20regeneration%20study%20with%20SCoT%20marker%20assisted%20clonal%20stability%20assessment%20and%20flow%20cytometric%20genome%20size%20analysis%20of%20Carthamus%20tinctorius%20L.:%20an%20important%20medicinal%20plant&rft.jtitle=Plant%20cell,%20tissue%20and%20organ%20culture&rft.au=Ejaz,%20Bushra&rft.date=2022-02-01&rft.volume=148&rft.issue=2&rft.spage=403&rft.epage=418&rft.pages=403-418&rft.issn=0167-6857&rft.eissn=1573-5044&rft_id=info:doi/10.1007/s11240-021-02197-x&rft_dat=%3Cproquest_cross%3E2620837689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620837689&rft_id=info:pmid/&rfr_iscdi=true