A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation
Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-s...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2022-01, Vol.449, p.110813, Article 110813 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110813 |
container_title | Journal of computational physics |
container_volume | 449 |
creator | Shiroto, Takashi Matsuyama, Akinobu Aiba, Nobuyuki Yagi, Masatoshi |
description | Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action–reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral in the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy. |
doi_str_mv | 10.1016/j.jcp.2021.110813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620430561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999121007087</els_id><sourcerecordid>2620430561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-f6b56b55b6486cda6e864975a42dc6913fa6aefbc3a817a59a222294b8a827f3</originalsourceid><addsrcrecordid>eNp9UNtKxDAQDaLgevkA3wI-d03SNtvik4g3EBTxPaTpdDfdblIzqSC--A_-oV9ilvXZYWBmmHPmcgg542zOGZcX_bw341wwweecs4rne2TGWc0yseByn8xY6mR1XfNDcoTYM8aqsqhm5POKbjRiBg7C8iMz3iGEd-uWtLWYqmjd5Cekd3qAsLaOolnBBmjnA40roBZ9DH60hm6mIVocwVhA-uIRXDNMcfXz9X3r12sIKXketDNrCm-Tjta7E3LQ6QHh9C8ek9fbm9fr--zx6e7h-uoxM7koY9bJpkxeNrKopGm1hEoW9aLUhWiNrHneaamha0yuK77QZa1FsrpoKl2JRZcfk_Pd2DH4twkwqt5PwaWNSkjBipyVkicU36FM8IgBOjUGu9HhQ3GmthKrXiWJ1VZitZM4cS53HEjXv1sICtP3zkBrA5ioWm__Yf8CHdSIsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620430561</pqid></control><display><type>article</type><title>A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation</title><source>Elsevier ScienceDirect Journals</source><creator>Shiroto, Takashi ; Matsuyama, Akinobu ; Aiba, Nobuyuki ; Yagi, Masatoshi</creator><creatorcontrib>Shiroto, Takashi ; Matsuyama, Akinobu ; Aiba, Nobuyuki ; Yagi, Masatoshi</creatorcontrib><description>Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action–reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral in the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2021.110813</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Computational physics ; Conservation ; Discontinuous Galerkin method ; Fokker-Planck equation ; Galerkin method ; Particle collisions ; Roundoff error ; Skew-symmetric form ; Symmetry ; Thermal relaxation ; Truncation errors ; Unlike-particle collision</subject><ispartof>Journal of computational physics, 2022-01, Vol.449, p.110813, Article 110813</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-f6b56b55b6486cda6e864975a42dc6913fa6aefbc3a817a59a222294b8a827f3</citedby><cites>FETCH-LOGICAL-c325t-f6b56b55b6486cda6e864975a42dc6913fa6aefbc3a817a59a222294b8a827f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999121007087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shiroto, Takashi</creatorcontrib><creatorcontrib>Matsuyama, Akinobu</creatorcontrib><creatorcontrib>Aiba, Nobuyuki</creatorcontrib><creatorcontrib>Yagi, Masatoshi</creatorcontrib><title>A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation</title><title>Journal of computational physics</title><description>Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action–reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral in the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.</description><subject>Computational physics</subject><subject>Conservation</subject><subject>Discontinuous Galerkin method</subject><subject>Fokker-Planck equation</subject><subject>Galerkin method</subject><subject>Particle collisions</subject><subject>Roundoff error</subject><subject>Skew-symmetric form</subject><subject>Symmetry</subject><subject>Thermal relaxation</subject><subject>Truncation errors</subject><subject>Unlike-particle collision</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKxDAQDaLgevkA3wI-d03SNtvik4g3EBTxPaTpdDfdblIzqSC--A_-oV9ilvXZYWBmmHPmcgg542zOGZcX_bw341wwweecs4rne2TGWc0yseByn8xY6mR1XfNDcoTYM8aqsqhm5POKbjRiBg7C8iMz3iGEd-uWtLWYqmjd5Cekd3qAsLaOolnBBmjnA40roBZ9DH60hm6mIVocwVhA-uIRXDNMcfXz9X3r12sIKXketDNrCm-Tjta7E3LQ6QHh9C8ek9fbm9fr--zx6e7h-uoxM7koY9bJpkxeNrKopGm1hEoW9aLUhWiNrHneaamha0yuK77QZa1FsrpoKl2JRZcfk_Pd2DH4twkwqt5PwaWNSkjBipyVkicU36FM8IgBOjUGu9HhQ3GmthKrXiWJ1VZitZM4cS53HEjXv1sICtP3zkBrA5ioWm__Yf8CHdSIsQ</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Shiroto, Takashi</creator><creator>Matsuyama, Akinobu</creator><creator>Aiba, Nobuyuki</creator><creator>Yagi, Masatoshi</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220115</creationdate><title>A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation</title><author>Shiroto, Takashi ; Matsuyama, Akinobu ; Aiba, Nobuyuki ; Yagi, Masatoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-f6b56b55b6486cda6e864975a42dc6913fa6aefbc3a817a59a222294b8a827f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational physics</topic><topic>Conservation</topic><topic>Discontinuous Galerkin method</topic><topic>Fokker-Planck equation</topic><topic>Galerkin method</topic><topic>Particle collisions</topic><topic>Roundoff error</topic><topic>Skew-symmetric form</topic><topic>Symmetry</topic><topic>Thermal relaxation</topic><topic>Truncation errors</topic><topic>Unlike-particle collision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiroto, Takashi</creatorcontrib><creatorcontrib>Matsuyama, Akinobu</creatorcontrib><creatorcontrib>Aiba, Nobuyuki</creatorcontrib><creatorcontrib>Yagi, Masatoshi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiroto, Takashi</au><au>Matsuyama, Akinobu</au><au>Aiba, Nobuyuki</au><au>Yagi, Masatoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation</atitle><jtitle>Journal of computational physics</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>449</volume><spage>110813</spage><pages>110813-</pages><artnum>110813</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Structure-preserving discretization of the Rosenbluth–Fokker–Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth–Fokker–Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action–reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral in the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2021.110813</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2022-01, Vol.449, p.110813, Article 110813 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2620430561 |
source | Elsevier ScienceDirect Journals |
subjects | Computational physics Conservation Discontinuous Galerkin method Fokker-Planck equation Galerkin method Particle collisions Roundoff error Skew-symmetric form Symmetry Thermal relaxation Truncation errors Unlike-particle collision |
title | A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth–Fokker–Planck equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A18%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mass-energy-conserving%20discontinuous%20Galerkin%20scheme%20for%20the%20isotropic%20multispecies%20Rosenbluth%E2%80%93Fokker%E2%80%93Planck%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Shiroto,%20Takashi&rft.date=2022-01-15&rft.volume=449&rft.spage=110813&rft.pages=110813-&rft.artnum=110813&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2021.110813&rft_dat=%3Cproquest_cross%3E2620430561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620430561&rft_id=info:pmid/&rft_els_id=S0021999121007087&rfr_iscdi=true |