Heat-stimulated crystallization and phase transformation of titania nanoparticles

[Display omitted] •Amorphous state of titania is stabilized by water molecules in its structure.•After water removal amorphous titania transforms to anatase of the same particle size.•Anatase-to-rutile transition occurs when the crystallite size becomes above 35–45 nm.•Crystallite size distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2021-12, Vol.576, p.126371, Article 126371
Hauptverfasser: Bachina, Almjasheva, O.V., Popkov, V.I., Nevedomskiy, V.N., Gusarov, V.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 126371
container_title Journal of crystal growth
container_volume 576
creator Bachina
Almjasheva, O.V.
Popkov, V.I.
Nevedomskiy, V.N.
Gusarov, V.V.
description [Display omitted] •Amorphous state of titania is stabilized by water molecules in its structure.•After water removal amorphous titania transforms to anatase of the same particle size.•Anatase-to-rutile transition occurs when the crystallite size becomes above 35–45 nm.•Crystallite size distribution explains gap in anatase and rutile crystallite size. To better understand the fundamental aspects of nanoparticle formation and transformation in the TiO2-H2O system the amorphous titania was synthesized as a precursor to studying crystal genesis, evolution, and transformation under heat treatment in air. The necessary depth of study was provided by comprehensive analysis using methods of PXRD, HT-PXRD, DSC-TG, TEM, BET adsorption, and helium pycnometry. The smallest crystallite size of the anatase phase is shown to be defined by the size of the initial amorphous titania nanoparticles. The amorphous state of initial titania nanoparticles is stabilized by water molecules incorporated into their structure. The anatase-to-rutile phase transition occurs when the average crystallite size of the anatase reaches the value of 35–45 nm. An explanation for a drastic change of the average crystallite size during the anatase-to-rutile transition repeatedly found in researches is in the difference in shapes of curves of crystallite size distribution.
doi_str_mv 10.1016/j.jcrysgro.2021.126371
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620403847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024821003468</els_id><sourcerecordid>2620403847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-21f6514965c4e89579c0bf42ae4505fd39921ec444333286790ad8b66b94b22c3</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouH78C1Lw3HXy0bS9KYu6woIIeg7TNNWUblKTrLD-9Xapnr3MHOa9N7wfIVcUlhSovOmXvQ77-B78kgGjS8okL-kRWdCq5HkBwI7JYposByaqU3IWYw8wOSksyMvaYMpjstvdgMm02SEq4TDYb0zWuwxdm40fGE2WArrY-bCdD77Lkk3oLGYOnR8xJKsHEy_ISYdDNJe_-5y8Pdy_rtb55vnxaXW3yTUXkHJGO1lQUctCC1PVRVlraDrB0IgCiq7ldc2o0UIIzjmrZFkDtlUjZVOLhjHNz8n1nDsG_7kzMane74KbXiomGQjglSgnlZxVOvgYg-nUGOwWw15RUAd8qld_-NQBn5rxTcbb2WimDl_WBBW1NU6b1gajk2q9_S_iB73lfKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620403847</pqid></control><display><type>article</type><title>Heat-stimulated crystallization and phase transformation of titania nanoparticles</title><source>Elsevier ScienceDirect Journals</source><creator>Bachina ; Almjasheva, O.V. ; Popkov, V.I. ; Nevedomskiy, V.N. ; Gusarov, V.V.</creator><creatorcontrib>Bachina ; Almjasheva, O.V. ; Popkov, V.I. ; Nevedomskiy, V.N. ; Gusarov, V.V.</creatorcontrib><description>[Display omitted] •Amorphous state of titania is stabilized by water molecules in its structure.•After water removal amorphous titania transforms to anatase of the same particle size.•Anatase-to-rutile transition occurs when the crystallite size becomes above 35–45 nm.•Crystallite size distribution explains gap in anatase and rutile crystallite size. To better understand the fundamental aspects of nanoparticle formation and transformation in the TiO2-H2O system the amorphous titania was synthesized as a precursor to studying crystal genesis, evolution, and transformation under heat treatment in air. The necessary depth of study was provided by comprehensive analysis using methods of PXRD, HT-PXRD, DSC-TG, TEM, BET adsorption, and helium pycnometry. The smallest crystallite size of the anatase phase is shown to be defined by the size of the initial amorphous titania nanoparticles. The amorphous state of initial titania nanoparticles is stabilized by water molecules incorporated into their structure. The anatase-to-rutile phase transition occurs when the average crystallite size of the anatase reaches the value of 35–45 nm. An explanation for a drastic change of the average crystallite size during the anatase-to-rutile transition repeatedly found in researches is in the difference in shapes of curves of crystallite size distribution.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2021.126371</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anatase ; Crystal growth ; Crystallites ; Crystallization ; Heat treatment ; Molecular structure ; Nanoparticles ; Phase transformation ; Phase transitions ; Precipitation ; Rutile ; Size distribution ; Titania ; Titanium dioxide ; Water chemistry</subject><ispartof>Journal of crystal growth, 2021-12, Vol.576, p.126371, Article 126371</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-21f6514965c4e89579c0bf42ae4505fd39921ec444333286790ad8b66b94b22c3</citedby><cites>FETCH-LOGICAL-c340t-21f6514965c4e89579c0bf42ae4505fd39921ec444333286790ad8b66b94b22c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022024821003468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Bachina</creatorcontrib><creatorcontrib>Almjasheva, O.V.</creatorcontrib><creatorcontrib>Popkov, V.I.</creatorcontrib><creatorcontrib>Nevedomskiy, V.N.</creatorcontrib><creatorcontrib>Gusarov, V.V.</creatorcontrib><title>Heat-stimulated crystallization and phase transformation of titania nanoparticles</title><title>Journal of crystal growth</title><description>[Display omitted] •Amorphous state of titania is stabilized by water molecules in its structure.•After water removal amorphous titania transforms to anatase of the same particle size.•Anatase-to-rutile transition occurs when the crystallite size becomes above 35–45 nm.•Crystallite size distribution explains gap in anatase and rutile crystallite size. To better understand the fundamental aspects of nanoparticle formation and transformation in the TiO2-H2O system the amorphous titania was synthesized as a precursor to studying crystal genesis, evolution, and transformation under heat treatment in air. The necessary depth of study was provided by comprehensive analysis using methods of PXRD, HT-PXRD, DSC-TG, TEM, BET adsorption, and helium pycnometry. The smallest crystallite size of the anatase phase is shown to be defined by the size of the initial amorphous titania nanoparticles. The amorphous state of initial titania nanoparticles is stabilized by water molecules incorporated into their structure. The anatase-to-rutile phase transition occurs when the average crystallite size of the anatase reaches the value of 35–45 nm. An explanation for a drastic change of the average crystallite size during the anatase-to-rutile transition repeatedly found in researches is in the difference in shapes of curves of crystallite size distribution.</description><subject>Anatase</subject><subject>Crystal growth</subject><subject>Crystallites</subject><subject>Crystallization</subject><subject>Heat treatment</subject><subject>Molecular structure</subject><subject>Nanoparticles</subject><subject>Phase transformation</subject><subject>Phase transitions</subject><subject>Precipitation</subject><subject>Rutile</subject><subject>Size distribution</subject><subject>Titania</subject><subject>Titanium dioxide</subject><subject>Water chemistry</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouH78C1Lw3HXy0bS9KYu6woIIeg7TNNWUblKTrLD-9Xapnr3MHOa9N7wfIVcUlhSovOmXvQ77-B78kgGjS8okL-kRWdCq5HkBwI7JYposByaqU3IWYw8wOSksyMvaYMpjstvdgMm02SEq4TDYb0zWuwxdm40fGE2WArrY-bCdD77Lkk3oLGYOnR8xJKsHEy_ISYdDNJe_-5y8Pdy_rtb55vnxaXW3yTUXkHJGO1lQUctCC1PVRVlraDrB0IgCiq7ldc2o0UIIzjmrZFkDtlUjZVOLhjHNz8n1nDsG_7kzMane74KbXiomGQjglSgnlZxVOvgYg-nUGOwWw15RUAd8qld_-NQBn5rxTcbb2WimDl_WBBW1NU6b1gajk2q9_S_iB73lfKw</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Bachina</creator><creator>Almjasheva, O.V.</creator><creator>Popkov, V.I.</creator><creator>Nevedomskiy, V.N.</creator><creator>Gusarov, V.V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211215</creationdate><title>Heat-stimulated crystallization and phase transformation of titania nanoparticles</title><author>Bachina ; Almjasheva, O.V. ; Popkov, V.I. ; Nevedomskiy, V.N. ; Gusarov, V.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-21f6514965c4e89579c0bf42ae4505fd39921ec444333286790ad8b66b94b22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatase</topic><topic>Crystal growth</topic><topic>Crystallites</topic><topic>Crystallization</topic><topic>Heat treatment</topic><topic>Molecular structure</topic><topic>Nanoparticles</topic><topic>Phase transformation</topic><topic>Phase transitions</topic><topic>Precipitation</topic><topic>Rutile</topic><topic>Size distribution</topic><topic>Titania</topic><topic>Titanium dioxide</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachina</creatorcontrib><creatorcontrib>Almjasheva, O.V.</creatorcontrib><creatorcontrib>Popkov, V.I.</creatorcontrib><creatorcontrib>Nevedomskiy, V.N.</creatorcontrib><creatorcontrib>Gusarov, V.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachina</au><au>Almjasheva, O.V.</au><au>Popkov, V.I.</au><au>Nevedomskiy, V.N.</au><au>Gusarov, V.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat-stimulated crystallization and phase transformation of titania nanoparticles</atitle><jtitle>Journal of crystal growth</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>576</volume><spage>126371</spage><pages>126371-</pages><artnum>126371</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>[Display omitted] •Amorphous state of titania is stabilized by water molecules in its structure.•After water removal amorphous titania transforms to anatase of the same particle size.•Anatase-to-rutile transition occurs when the crystallite size becomes above 35–45 nm.•Crystallite size distribution explains gap in anatase and rutile crystallite size. To better understand the fundamental aspects of nanoparticle formation and transformation in the TiO2-H2O system the amorphous titania was synthesized as a precursor to studying crystal genesis, evolution, and transformation under heat treatment in air. The necessary depth of study was provided by comprehensive analysis using methods of PXRD, HT-PXRD, DSC-TG, TEM, BET adsorption, and helium pycnometry. The smallest crystallite size of the anatase phase is shown to be defined by the size of the initial amorphous titania nanoparticles. The amorphous state of initial titania nanoparticles is stabilized by water molecules incorporated into their structure. The anatase-to-rutile phase transition occurs when the average crystallite size of the anatase reaches the value of 35–45 nm. An explanation for a drastic change of the average crystallite size during the anatase-to-rutile transition repeatedly found in researches is in the difference in shapes of curves of crystallite size distribution.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2021.126371</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2021-12, Vol.576, p.126371, Article 126371
issn 0022-0248
1873-5002
language eng
recordid cdi_proquest_journals_2620403847
source Elsevier ScienceDirect Journals
subjects Anatase
Crystal growth
Crystallites
Crystallization
Heat treatment
Molecular structure
Nanoparticles
Phase transformation
Phase transitions
Precipitation
Rutile
Size distribution
Titania
Titanium dioxide
Water chemistry
title Heat-stimulated crystallization and phase transformation of titania nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat-stimulated%20crystallization%20and%20phase%20transformation%20of%20titania%20nanoparticles&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Bachina&rft.date=2021-12-15&rft.volume=576&rft.spage=126371&rft.pages=126371-&rft.artnum=126371&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2021.126371&rft_dat=%3Cproquest_cross%3E2620403847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620403847&rft_id=info:pmid/&rft_els_id=S0022024821003468&rfr_iscdi=true