Metal–Organic Framework‐Based Sulfur‐Loaded Materials

Lithium‐sulfur batteries (LSBs) are considered promising new energy storage systems given their outstanding theoretical energy densities. Nevertheless, issues such as low electrical conductivity and severe volume expansion, along with the formation of polysulfides during cycling, restrict their prac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental materials (Hoboken, N.J.) N.J.), 2022-01, Vol.5 (1), p.215-230
Hauptverfasser: Du, Meng, Li, Qing, Zhang, Guangxun, Wang, Feifei, Pang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 1
container_start_page 215
container_title Energy & environmental materials (Hoboken, N.J.)
container_volume 5
creator Du, Meng
Li, Qing
Zhang, Guangxun
Wang, Feifei
Pang, Huan
description Lithium‐sulfur batteries (LSBs) are considered promising new energy storage systems given their outstanding theoretical energy densities. Nevertheless, issues such as low electrical conductivity and severe volume expansion, along with the formation of polysulfides during cycling, restrict their practical applications. To overcome these issues, it is necessary to find suitable and effective sulfur host materials. Metal–organic frameworks (MOFs), which are porous crystalline materials in the bourgeoning developmental stages, have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure. Herein, we provide a comprehensive overview of MOF‐based sulfur‐loaded materials and discuss the charge/discharge mechanisms, strategies of enhancing battery performance, sulfur loading methods, and applications in LSBs. An outlook on future directions, prospects, and possible obstacles for the development of these materials is also provided. Metal–organic frameworks (MOFs) provide enormous opportunities for developing advanced cathode materials of lithium‐sulfur batteries (LSBs) due to their high porosity and controllable pore structure. In this review, research achievements and progress on MOF‐based sulfur‐loaded materials are provided, including the charge/discharge mechanism, strategies for enhancing battery performance, sulfur loading method, and applications in LSBs.
doi_str_mv 10.1002/eem2.12170
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2620277791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620277791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3720-ecf1923b99be9d0cece055cd0573a2a3f60beca57c786e8faed8f067947844dd3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGovPkHBm7B1kmw2GzxpaVVo6UE9hzSZyNZtt2a7lN76CIJv2CcxdT148vTPD9_MwEfIJYUBBWA3iEs2oIxKOCEdJqRIgIvs9M98Tnp1vYAIA-UpVR1yO8WNKQ_7r1l4M6vC9sfBLHFbhffD_vPe1Oj6z03pmxDrpDIu9qnZYChMWV-QMx8De7_ZJa_j0cvwMZnMHp6Gd5PEcskgQeupYnyu1ByVA4sWQQjrQEhumOE-gzlaI6SVeYa5N-hyD5lUqczT1DneJVft3XWoPhqsN3pRNWEVX2qWMWBSSkUjdd1SNlR1HdDrdSiWJuw0BX30o49-9I-fCNMW3hYl7v4h9Wg0Ze3ON7RjaUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620277791</pqid></control><display><type>article</type><title>Metal–Organic Framework‐Based Sulfur‐Loaded Materials</title><source>Wiley Online Library Open Access</source><creator>Du, Meng ; Li, Qing ; Zhang, Guangxun ; Wang, Feifei ; Pang, Huan</creator><creatorcontrib>Du, Meng ; Li, Qing ; Zhang, Guangxun ; Wang, Feifei ; Pang, Huan</creatorcontrib><description>Lithium‐sulfur batteries (LSBs) are considered promising new energy storage systems given their outstanding theoretical energy densities. Nevertheless, issues such as low electrical conductivity and severe volume expansion, along with the formation of polysulfides during cycling, restrict their practical applications. To overcome these issues, it is necessary to find suitable and effective sulfur host materials. Metal–organic frameworks (MOFs), which are porous crystalline materials in the bourgeoning developmental stages, have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure. Herein, we provide a comprehensive overview of MOF‐based sulfur‐loaded materials and discuss the charge/discharge mechanisms, strategies of enhancing battery performance, sulfur loading methods, and applications in LSBs. An outlook on future directions, prospects, and possible obstacles for the development of these materials is also provided. Metal–organic frameworks (MOFs) provide enormous opportunities for developing advanced cathode materials of lithium‐sulfur batteries (LSBs) due to their high porosity and controllable pore structure. In this review, research achievements and progress on MOF‐based sulfur‐loaded materials are provided, including the charge/discharge mechanism, strategies for enhancing battery performance, sulfur loading method, and applications in LSBs.</description><identifier>ISSN: 2575-0356</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12170</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Developmental stages ; Electrical conductivity ; Electrical resistivity ; Energy storage ; Lithium ; Lithium sulfur batteries ; Metal-organic frameworks ; Porosity ; Porous materials ; Storage batteries ; Storage systems ; Sulfur ; sulfur‐loaded materials</subject><ispartof>Energy &amp; environmental materials (Hoboken, N.J.), 2022-01, Vol.5 (1), p.215-230</ispartof><rights>2021 Zhengzhou University</rights><rights>2022 Zhengzhou University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3720-ecf1923b99be9d0cece055cd0573a2a3f60beca57c786e8faed8f067947844dd3</citedby><cites>FETCH-LOGICAL-c3720-ecf1923b99be9d0cece055cd0573a2a3f60beca57c786e8faed8f067947844dd3</cites><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11542,27903,27904,45553,45554,46030,46387,46454,46811</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12170$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Zhang, Guangxun</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>Metal–Organic Framework‐Based Sulfur‐Loaded Materials</title><title>Energy &amp; environmental materials (Hoboken, N.J.)</title><description>Lithium‐sulfur batteries (LSBs) are considered promising new energy storage systems given their outstanding theoretical energy densities. Nevertheless, issues such as low electrical conductivity and severe volume expansion, along with the formation of polysulfides during cycling, restrict their practical applications. To overcome these issues, it is necessary to find suitable and effective sulfur host materials. Metal–organic frameworks (MOFs), which are porous crystalline materials in the bourgeoning developmental stages, have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure. Herein, we provide a comprehensive overview of MOF‐based sulfur‐loaded materials and discuss the charge/discharge mechanisms, strategies of enhancing battery performance, sulfur loading methods, and applications in LSBs. An outlook on future directions, prospects, and possible obstacles for the development of these materials is also provided. Metal–organic frameworks (MOFs) provide enormous opportunities for developing advanced cathode materials of lithium‐sulfur batteries (LSBs) due to their high porosity and controllable pore structure. In this review, research achievements and progress on MOF‐based sulfur‐loaded materials are provided, including the charge/discharge mechanism, strategies for enhancing battery performance, sulfur loading method, and applications in LSBs.</description><subject>Batteries</subject><subject>Developmental stages</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy storage</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Metal-organic frameworks</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Storage batteries</subject><subject>Storage systems</subject><subject>Sulfur</subject><subject>sulfur‐loaded materials</subject><issn>2575-0356</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGovPkHBm7B1kmw2GzxpaVVo6UE9hzSZyNZtt2a7lN76CIJv2CcxdT148vTPD9_MwEfIJYUBBWA3iEs2oIxKOCEdJqRIgIvs9M98Tnp1vYAIA-UpVR1yO8WNKQ_7r1l4M6vC9sfBLHFbhffD_vPe1Oj6z03pmxDrpDIu9qnZYChMWV-QMx8De7_ZJa_j0cvwMZnMHp6Gd5PEcskgQeupYnyu1ByVA4sWQQjrQEhumOE-gzlaI6SVeYa5N-hyD5lUqczT1DneJVft3XWoPhqsN3pRNWEVX2qWMWBSSkUjdd1SNlR1HdDrdSiWJuw0BX30o49-9I-fCNMW3hYl7v4h9Wg0Ze3ON7RjaUo</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Du, Meng</creator><creator>Li, Qing</creator><creator>Zhang, Guangxun</creator><creator>Wang, Feifei</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>202201</creationdate><title>Metal–Organic Framework‐Based Sulfur‐Loaded Materials</title><author>Du, Meng ; Li, Qing ; Zhang, Guangxun ; Wang, Feifei ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3720-ecf1923b99be9d0cece055cd0573a2a3f60beca57c786e8faed8f067947844dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Developmental stages</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy storage</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Metal-organic frameworks</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Storage batteries</topic><topic>Storage systems</topic><topic>Sulfur</topic><topic>sulfur‐loaded materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Zhang, Guangxun</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Du, Meng</au><au>Li, Qing</au><au>Zhang, Guangxun</au><au>Wang, Feifei</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework‐Based Sulfur‐Loaded Materials</atitle><jtitle>Energy &amp; environmental materials (Hoboken, N.J.)</jtitle><date>2022-01</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>215</spage><epage>230</epage><pages>215-230</pages><issn>2575-0356</issn><eissn>2575-0356</eissn><abstract>Lithium‐sulfur batteries (LSBs) are considered promising new energy storage systems given their outstanding theoretical energy densities. Nevertheless, issues such as low electrical conductivity and severe volume expansion, along with the formation of polysulfides during cycling, restrict their practical applications. To overcome these issues, it is necessary to find suitable and effective sulfur host materials. Metal–organic frameworks (MOFs), which are porous crystalline materials in the bourgeoning developmental stages, have demonstrated enormous potential in LSBs owing to their high porosity and tunable porous structure. Herein, we provide a comprehensive overview of MOF‐based sulfur‐loaded materials and discuss the charge/discharge mechanisms, strategies of enhancing battery performance, sulfur loading methods, and applications in LSBs. An outlook on future directions, prospects, and possible obstacles for the development of these materials is also provided. Metal–organic frameworks (MOFs) provide enormous opportunities for developing advanced cathode materials of lithium‐sulfur batteries (LSBs) due to their high porosity and controllable pore structure. In this review, research achievements and progress on MOF‐based sulfur‐loaded materials are provided, including the charge/discharge mechanism, strategies for enhancing battery performance, sulfur loading method, and applications in LSBs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12170</doi><tpages>230</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2575-0356
ispartof Energy & environmental materials (Hoboken, N.J.), 2022-01, Vol.5 (1), p.215-230
issn 2575-0356
2575-0356
language eng
recordid cdi_proquest_journals_2620277791
source Wiley Online Library Open Access
subjects Batteries
Developmental stages
Electrical conductivity
Electrical resistivity
Energy storage
Lithium
Lithium sulfur batteries
Metal-organic frameworks
Porosity
Porous materials
Storage batteries
Storage systems
Sulfur
sulfur‐loaded materials
title Metal–Organic Framework‐Based Sulfur‐Loaded Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A05%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%E2%80%90Based%20Sulfur%E2%80%90Loaded%20Materials&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Du,%20Meng&rft.date=2022-01&rft.volume=5&rft.issue=1&rft.spage=215&rft.epage=230&rft.pages=215-230&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12170&rft_dat=%3Cproquest_24P%3E2620277791%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620277791&rft_id=info:pmid/&rfr_iscdi=true