A Tight Reverse Minkowski Inequality for the Epstein Zeta Function

We prove that if \(\mathcal{L} \subset \mathbb{R}^n\) is a lattice such that \(\det(\mathcal{L}') \geq 1\) for all sublattices \(\mathcal{L}' \subseteq \mathcal{L}\), then \[ \sum_{\substack{\mathbf{y}\in\mathcal{L}\\\mathbf{y}\neq\mathbf0}} (\|\mathbf{y}\|^2+q)^{-s} \leq \sum_{\substack{\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Eisenberg, Yael, Regev, Oded, Stephens-Davidowitz, Noah
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Eisenberg, Yael
Regev, Oded
Stephens-Davidowitz, Noah
description We prove that if \(\mathcal{L} \subset \mathbb{R}^n\) is a lattice such that \(\det(\mathcal{L}') \geq 1\) for all sublattices \(\mathcal{L}' \subseteq \mathcal{L}\), then \[ \sum_{\substack{\mathbf{y}\in\mathcal{L}\\\mathbf{y}\neq\mathbf0}} (\|\mathbf{y}\|^2+q)^{-s} \leq \sum_{\substack{\mathbf{z} \in \mathbb{Z}^n\\\mathbf{z}\neq\mathbf{0}}} (\|\mathbf{z}\|^2+q)^{-s} \] for all \(s > n/2\) and all \(0 \leq q \leq (2s-n)/(n+2)\), with equality if and only if \(\mathcal{L}\) is isomorphic to \(\mathbb{Z}^n\).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2620231428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620231428</sourcerecordid><originalsourceid>FETCH-proquest_journals_26202314283</originalsourceid><addsrcrecordid>eNqNys0KgkAUQOEhCJLyHS60FsY7am4rlFq0CVdtROKaozKj81P09rXoAVqdxXcWLEAh4ihPEFcstLbnnGO2wzQVATvsoZKPzsGVnmQswUWqQb_sIOGsaPbNKN0bWm3AdQTFZB1JBTdyDZRe3Z3UasOWbTNaCn9ds21ZVMdTNBk9e7Ku7rU36ks1ZshRxAnm4r_rA4DvOVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620231428</pqid></control><display><type>article</type><title>A Tight Reverse Minkowski Inequality for the Epstein Zeta Function</title><source>Free E- Journals</source><creator>Eisenberg, Yael ; Regev, Oded ; Stephens-Davidowitz, Noah</creator><creatorcontrib>Eisenberg, Yael ; Regev, Oded ; Stephens-Davidowitz, Noah</creatorcontrib><description>We prove that if \(\mathcal{L} \subset \mathbb{R}^n\) is a lattice such that \(\det(\mathcal{L}') \geq 1\) for all sublattices \(\mathcal{L}' \subseteq \mathcal{L}\), then \[ \sum_{\substack{\mathbf{y}\in\mathcal{L}\\\mathbf{y}\neq\mathbf0}} (\|\mathbf{y}\|^2+q)^{-s} \leq \sum_{\substack{\mathbf{z} \in \mathbb{Z}^n\\\mathbf{z}\neq\mathbf{0}}} (\|\mathbf{z}\|^2+q)^{-s} \] for all \(s &gt; n/2\) and all \(0 \leq q \leq (2s-n)/(n+2)\), with equality if and only if \(\mathcal{L}\) is isomorphic to \(\mathbb{Z}^n\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Eisenberg, Yael</creatorcontrib><creatorcontrib>Regev, Oded</creatorcontrib><creatorcontrib>Stephens-Davidowitz, Noah</creatorcontrib><title>A Tight Reverse Minkowski Inequality for the Epstein Zeta Function</title><title>arXiv.org</title><description>We prove that if \(\mathcal{L} \subset \mathbb{R}^n\) is a lattice such that \(\det(\mathcal{L}') \geq 1\) for all sublattices \(\mathcal{L}' \subseteq \mathcal{L}\), then \[ \sum_{\substack{\mathbf{y}\in\mathcal{L}\\\mathbf{y}\neq\mathbf0}} (\|\mathbf{y}\|^2+q)^{-s} \leq \sum_{\substack{\mathbf{z} \in \mathbb{Z}^n\\\mathbf{z}\neq\mathbf{0}}} (\|\mathbf{z}\|^2+q)^{-s} \] for all \(s &gt; n/2\) and all \(0 \leq q \leq (2s-n)/(n+2)\), with equality if and only if \(\mathcal{L}\) is isomorphic to \(\mathbb{Z}^n\).</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNys0KgkAUQOEhCJLyHS60FsY7am4rlFq0CVdtROKaozKj81P09rXoAVqdxXcWLEAh4ihPEFcstLbnnGO2wzQVATvsoZKPzsGVnmQswUWqQb_sIOGsaPbNKN0bWm3AdQTFZB1JBTdyDZRe3Z3UasOWbTNaCn9ds21ZVMdTNBk9e7Ku7rU36ks1ZshRxAnm4r_rA4DvOVs</recordid><startdate>20221002</startdate><enddate>20221002</enddate><creator>Eisenberg, Yael</creator><creator>Regev, Oded</creator><creator>Stephens-Davidowitz, Noah</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221002</creationdate><title>A Tight Reverse Minkowski Inequality for the Epstein Zeta Function</title><author>Eisenberg, Yael ; Regev, Oded ; Stephens-Davidowitz, Noah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26202314283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Eisenberg, Yael</creatorcontrib><creatorcontrib>Regev, Oded</creatorcontrib><creatorcontrib>Stephens-Davidowitz, Noah</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenberg, Yael</au><au>Regev, Oded</au><au>Stephens-Davidowitz, Noah</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Tight Reverse Minkowski Inequality for the Epstein Zeta Function</atitle><jtitle>arXiv.org</jtitle><date>2022-10-02</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We prove that if \(\mathcal{L} \subset \mathbb{R}^n\) is a lattice such that \(\det(\mathcal{L}') \geq 1\) for all sublattices \(\mathcal{L}' \subseteq \mathcal{L}\), then \[ \sum_{\substack{\mathbf{y}\in\mathcal{L}\\\mathbf{y}\neq\mathbf0}} (\|\mathbf{y}\|^2+q)^{-s} \leq \sum_{\substack{\mathbf{z} \in \mathbb{Z}^n\\\mathbf{z}\neq\mathbf{0}}} (\|\mathbf{z}\|^2+q)^{-s} \] for all \(s &gt; n/2\) and all \(0 \leq q \leq (2s-n)/(n+2)\), with equality if and only if \(\mathcal{L}\) is isomorphic to \(\mathbb{Z}^n\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2620231428
source Free E- Journals
title A Tight Reverse Minkowski Inequality for the Epstein Zeta Function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T18%3A46%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Tight%20Reverse%20Minkowski%20Inequality%20for%20the%20Epstein%20Zeta%20Function&rft.jtitle=arXiv.org&rft.au=Eisenberg,%20Yael&rft.date=2022-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2620231428%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620231428&rft_id=info:pmid/&rfr_iscdi=true