ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS
DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure shea...
Gespeichert in:
Veröffentlicht in: | Theory and applications of categories 2022-01, Vol.38 (3), p.64 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 64 |
container_title | Theory and applications of categories |
container_volume | 38 |
creator | Bressler, Paul Rojas, Juan Diego |
description | DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2620027245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620027245</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-154ce8361c40a5098bce5bb9b1043532ebdb9a5753a4b38a91d51555e0c8ecc83</originalsourceid><addsrcrecordid>eNotj11rwjAYhYMgTN3-Q8HrQN4kb0wva2w1EO22djCvJInZhQy_qv_fgl4dOPCchzMgI-AMKCr4fSPjrjswxrmSakSg3mTtqsyMK5rGVtYUre2rusqa7frTlaa1Jlt80cIty_l3bRfNOxn--f8ufbxyQn6qsjUr6upljzt6Bi1uFFDGpIWCKJlHlusQE4aQB2BSoOAp7EPucYbCyyC0z2GPgIiJRZ1i1GJCps_d8_V0uafutjuc7tdjr9xxxfsDMy5RPAA0uDme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620027245</pqid></control><display><type>article</type><title>ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><source>EZB Electronic Journals Library</source><creator>Bressler, Paul ; Rojas, Juan Diego</creator><creatorcontrib>Bressler, Paul ; Rojas, Juan Diego</creatorcontrib><description>DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids.</description><identifier>EISSN: 1201-561X</identifier><language>eng</language><publisher>Sackville: R. Rosebrugh</publisher><subject>Algebra ; Classification ; Construction industry ; Homology ; Manifolds ; Topological manifolds</subject><ispartof>Theory and applications of categories, 2022-01, Vol.38 (3), p.64</ispartof><rights>Copyright R. Rosebrugh 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Bressler, Paul</creatorcontrib><creatorcontrib>Rojas, Juan Diego</creatorcontrib><title>ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS</title><title>Theory and applications of categories</title><description>DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids.</description><subject>Algebra</subject><subject>Classification</subject><subject>Construction industry</subject><subject>Homology</subject><subject>Manifolds</subject><subject>Topological manifolds</subject><issn>1201-561X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotj11rwjAYhYMgTN3-Q8HrQN4kb0wva2w1EO22djCvJInZhQy_qv_fgl4dOPCchzMgI-AMKCr4fSPjrjswxrmSakSg3mTtqsyMK5rGVtYUre2rusqa7frTlaa1Jlt80cIty_l3bRfNOxn--f8ufbxyQn6qsjUr6upljzt6Bi1uFFDGpIWCKJlHlusQE4aQB2BSoOAp7EPucYbCyyC0z2GPgIiJRZ1i1GJCps_d8_V0uafutjuc7tdjr9xxxfsDMy5RPAA0uDme</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Bressler, Paul</creator><creator>Rojas, Juan Diego</creator><general>R. Rosebrugh</general><scope>JQ2</scope></search><sort><creationdate>20220101</creationdate><title>ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS</title><author>Bressler, Paul ; Rojas, Juan Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-154ce8361c40a5098bce5bb9b1043532ebdb9a5753a4b38a91d51555e0c8ecc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Classification</topic><topic>Construction industry</topic><topic>Homology</topic><topic>Manifolds</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bressler, Paul</creatorcontrib><creatorcontrib>Rojas, Juan Diego</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Theory and applications of categories</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bressler, Paul</au><au>Rojas, Juan Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS</atitle><jtitle>Theory and applications of categories</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>64</spage><pages>64-</pages><eissn>1201-561X</eissn><abstract>DQ-algebroids locally defined on a symplectic manifold form a 2-gerbe. By adapting the method of P. Deligne to the setting of DQ-algebroids we show that this 2-gerbe admits a canonical global section, namely that every symplectic manifold admits a canonical DQ-algebroid quantizing the structure sheaf. The construction relies on methods of non-abelian cohomology and local computations in the Weyl algebra. As a corollary we obtain a classification of symplectic DQ-algebroids.</abstract><cop>Sackville</cop><pub>R. Rosebrugh</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1201-561X |
ispartof | Theory and applications of categories, 2022-01, Vol.38 (3), p.64 |
issn | 1201-561X |
language | eng |
recordid | cdi_proquest_journals_2620027245 |
source | Open Access: Freely Accessible Journals by multiple vendors; EZB Electronic Journals Library |
subjects | Algebra Classification Construction industry Homology Manifolds Topological manifolds |
title | ON THE CLASSIFICATION OF SYMPLECTIC DQ-ALGEBROIDS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A38%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20CLASSIFICATION%20OF%20SYMPLECTIC%20DQ-ALGEBROIDS&rft.jtitle=Theory%20and%20applications%20of%20categories&rft.au=Bressler,%20Paul&rft.date=2022-01-01&rft.volume=38&rft.issue=3&rft.spage=64&rft.pages=64-&rft.eissn=1201-561X&rft_id=info:doi/&rft_dat=%3Cproquest%3E2620027245%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620027245&rft_id=info:pmid/&rfr_iscdi=true |