Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10

Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448
Hauptverfasser: Ronchi, M. R., Yan, H., Tasan, C. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 2
container_start_page 432
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 53
creator Ronchi, M. R.
Yan, H.
Tasan, C. C.
description Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe 45 Mn 35 Co 10 Cr 10 alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced ε -martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions. Graphical Abstract
doi_str_mv 10.1007/s11661-021-06498-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619964267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619964267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY7PJURZrCy1e6jnEbFJSbLYmW0r_vbErePMwzDC873w8CN0TeCQAzVMmRAiCgZYQXEl8vEATUnOGieJwWWpoGK4FZdfoJuctABDFxAQt56cu9RsX8SJ2B-u6amXS4GIOQ7DVOpmYfZ92Zgh9rEzsqvUxxBjipgqxmjleryKr20Sg7QncoitvPrO7-81T9D57WbdzvHx7XbTPS2yZYANWSn2UawVtGgedlOCpFQKEsd4Ly5WVUNqey_KA9UQawrxTTNYdp9ZJy6boYZy7T_3XweVBb_tDimWlpoIoJTgVTVHRUWVTn3NyXu9T2Jl00gT0DzU9UtOFmj5T08diYqMpF3HcuPQ3-h_XN6z8bn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619964267</pqid></control><display><type>article</type><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><source>SpringerNature Journals</source><creator>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</creator><creatorcontrib>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</creatorcontrib><description>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe 45 Mn 35 Co 10 Cr 10 alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced ε -martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions. Graphical Abstract</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06498-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallography ; Heat treating ; Hydrogen ; Hydrogen embrittlement ; Hydrogen evolution ; Martensite ; Martensitic transformations ; Materials Science ; Metallic Materials ; Metastable phases ; Microstructure ; Nanotechnology ; Original Research Article ; Structural Materials ; Surfaces and Interfaces ; Thermal desorption spectroscopy ; Thin Films ; Twinning</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021</rights><rights>The Minerals, Metals &amp; Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</citedby><cites>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06498-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06498-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ronchi, M. R.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Tasan, C. C.</creatorcontrib><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe 45 Mn 35 Co 10 Cr 10 alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced ε -martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions. Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallography</subject><subject>Heat treating</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen evolution</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metastable phases</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal desorption spectroscopy</subject><subject>Thin Films</subject><subject>Twinning</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY7PJURZrCy1e6jnEbFJSbLYmW0r_vbErePMwzDC873w8CN0TeCQAzVMmRAiCgZYQXEl8vEATUnOGieJwWWpoGK4FZdfoJuctABDFxAQt56cu9RsX8SJ2B-u6amXS4GIOQ7DVOpmYfZ92Zgh9rEzsqvUxxBjipgqxmjleryKr20Sg7QncoitvPrO7-81T9D57WbdzvHx7XbTPS2yZYANWSn2UawVtGgedlOCpFQKEsd4Ly5WVUNqey_KA9UQawrxTTNYdp9ZJy6boYZy7T_3XweVBb_tDimWlpoIoJTgVTVHRUWVTn3NyXu9T2Jl00gT0DzU9UtOFmj5T08diYqMpF3HcuPQ3-h_XN6z8bn0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ronchi, M. R.</creator><creator>Yan, H.</creator><creator>Tasan, C. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220201</creationdate><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><author>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallography</topic><topic>Heat treating</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen evolution</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metastable phases</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal desorption spectroscopy</topic><topic>Thin Films</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronchi, M. R.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Tasan, C. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronchi, M. R.</au><au>Yan, H.</au><au>Tasan, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>2</issue><spage>432</spage><epage>448</epage><pages>432-448</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe 45 Mn 35 Co 10 Cr 10 alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced ε -martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06498-w</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2619964267
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallography
Heat treating
Hydrogen
Hydrogen embrittlement
Hydrogen evolution
Martensite
Martensitic transformations
Materials Science
Metallic Materials
Metastable phases
Microstructure
Nanotechnology
Original Research Article
Structural Materials
Surfaces and Interfaces
Thermal desorption spectroscopy
Thin Films
Twinning
title Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-Induced%20Martensitic%20Transformation%20and%20Twinning%20in%20Fe45Mn35Cr10Co10&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Ronchi,%20M.%20R.&rft.date=2022-02-01&rft.volume=53&rft.issue=2&rft.spage=432&rft.epage=448&rft.pages=432-448&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06498-w&rft_dat=%3Cproquest_cross%3E2619964267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619964267&rft_id=info:pmid/&rfr_iscdi=true