Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10
Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing ε -martensite transformation may exhibit resistance to hydrogen embrittlement. To be...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 448 |
---|---|
container_issue | 2 |
container_start_page | 432 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 53 |
creator | Ronchi, M. R. Yan, H. Tasan, C. C. |
description | Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing
ε
-martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe
45
Mn
35
Co
10
Cr
10
alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced
ε
-martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions.
Graphical Abstract |
doi_str_mv | 10.1007/s11661-021-06498-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619964267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619964267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY7PJURZrCy1e6jnEbFJSbLYmW0r_vbErePMwzDC873w8CN0TeCQAzVMmRAiCgZYQXEl8vEATUnOGieJwWWpoGK4FZdfoJuctABDFxAQt56cu9RsX8SJ2B-u6amXS4GIOQ7DVOpmYfZ92Zgh9rEzsqvUxxBjipgqxmjleryKr20Sg7QncoitvPrO7-81T9D57WbdzvHx7XbTPS2yZYANWSn2UawVtGgedlOCpFQKEsd4Ly5WVUNqey_KA9UQawrxTTNYdp9ZJy6boYZy7T_3XweVBb_tDimWlpoIoJTgVTVHRUWVTn3NyXu9T2Jl00gT0DzU9UtOFmj5T08diYqMpF3HcuPQ3-h_XN6z8bn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619964267</pqid></control><display><type>article</type><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><source>SpringerNature Journals</source><creator>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</creator><creatorcontrib>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</creatorcontrib><description>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing
ε
-martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe
45
Mn
35
Co
10
Cr
10
alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced
ε
-martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions.
Graphical Abstract</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-021-06498-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallography ; Heat treating ; Hydrogen ; Hydrogen embrittlement ; Hydrogen evolution ; Martensite ; Martensitic transformations ; Materials Science ; Metallic Materials ; Metastable phases ; Microstructure ; Nanotechnology ; Original Research Article ; Structural Materials ; Surfaces and Interfaces ; Thermal desorption spectroscopy ; Thin Films ; Twinning</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2021</rights><rights>The Minerals, Metals & Materials Society and ASM International 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</citedby><cites>FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-021-06498-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-021-06498-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ronchi, M. R.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Tasan, C. C.</creatorcontrib><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing
ε
-martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe
45
Mn
35
Co
10
Cr
10
alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced
ε
-martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions.
Graphical Abstract</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallography</subject><subject>Heat treating</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Hydrogen evolution</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metastable phases</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Original Research Article</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal desorption spectroscopy</subject><subject>Thin Films</subject><subject>Twinning</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC5-jkY7PJURZrCy1e6jnEbFJSbLYmW0r_vbErePMwzDC873w8CN0TeCQAzVMmRAiCgZYQXEl8vEATUnOGieJwWWpoGK4FZdfoJuctABDFxAQt56cu9RsX8SJ2B-u6amXS4GIOQ7DVOpmYfZ92Zgh9rEzsqvUxxBjipgqxmjleryKr20Sg7QncoitvPrO7-81T9D57WbdzvHx7XbTPS2yZYANWSn2UawVtGgedlOCpFQKEsd4Ly5WVUNqey_KA9UQawrxTTNYdp9ZJy6boYZy7T_3XweVBb_tDimWlpoIoJTgVTVHRUWVTn3NyXu9T2Jl00gT0DzU9UtOFmj5T08diYqMpF3HcuPQ3-h_XN6z8bn0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ronchi, M. R.</creator><creator>Yan, H.</creator><creator>Tasan, C. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20220201</creationdate><title>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</title><author>Ronchi, M. R. ; Yan, H. ; Tasan, C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-999b6616277e0d880f2c6606acff6c49c800d8f48154cf18a13fe9385d42ce8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallography</topic><topic>Heat treating</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Hydrogen evolution</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metastable phases</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Original Research Article</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal desorption spectroscopy</topic><topic>Thin Films</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronchi, M. R.</creatorcontrib><creatorcontrib>Yan, H.</creatorcontrib><creatorcontrib>Tasan, C. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronchi, M. R.</au><au>Yan, H.</au><au>Tasan, C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>53</volume><issue>2</issue><spage>432</spage><epage>448</epage><pages>432-448</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Hydrogen embrittlement can occur in steels with metastable phases, due to activation of the hydrogen-enhanced decohesion mechanism upon transformation. Meanwhile, recent investigations suggest that alloys undergoing
ε
-martensite transformation may exhibit resistance to hydrogen embrittlement. To better understand hydrogen effects in these alloys, we investigate the hydrogen-induced microstructural transformations in a metastable Fe
45
Mn
35
Co
10
Cr
10
alloy. To this end, we electrochemically charge unstrained samples, quantify the hydrogen evolution by thermal desorption spectroscopy, and observe microstructural transformations by scanning electron microscopy techniques. Through these analyses, we find that the hydrogen-induced
ε
-martensite formation is dependent on the crystallographic orientation of the austenite grains, and takes place preferentially along Σ3 boundaries. Further charging of hydrogen induces extension twinning within the martensite. We examine the microstructural factors influencing these transformations to better understand the hydrogen-microstructure interactions.
Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-021-06498-w</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2022-02, Vol.53 (2), p.432-448 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2619964267 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Crystallography Heat treating Hydrogen Hydrogen embrittlement Hydrogen evolution Martensite Martensitic transformations Materials Science Metallic Materials Metastable phases Microstructure Nanotechnology Original Research Article Structural Materials Surfaces and Interfaces Thermal desorption spectroscopy Thin Films Twinning |
title | Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-Induced%20Martensitic%20Transformation%20and%20Twinning%20in%20Fe45Mn35Cr10Co10&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Ronchi,%20M.%20R.&rft.date=2022-02-01&rft.volume=53&rft.issue=2&rft.spage=432&rft.epage=448&rft.pages=432-448&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-021-06498-w&rft_dat=%3Cproquest_cross%3E2619964267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619964267&rft_id=info:pmid/&rfr_iscdi=true |