Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM
The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial inte...
Gespeichert in:
Veröffentlicht in: | Scientific programming 2022-01, Vol.2022, p.1-7 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Scientific programming |
container_volume | 2022 |
creator | Long, Weilin Gao, Yi |
description | The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education. |
doi_str_mv | 10.1155/2022/5379646 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619950738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619950738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmNw4wdE4ghlcdq0zXFsAyYN7TBA3Ko0TbZM_RhJChq_npbtzMmvpce2_CB0DeQegLERJZSOWJjwOIpP0ADShAUc-MdplwlLA06j6BxdOLclBFIgZIDysfVGG2lEiee1V2Vp1qqWCs-KVgpvmhqv9s6rCj8Ipwrc9VOjtbKq9v3M7Ksp2z9sXK4ba_ymwr7By503lflRePX-conOtCidujrWIXp7nL1OnoPF8mk-GS8CGYaJDxISA6MsZClorvOi-0WJmKk8B6Y0I1TSXAtNopiDTAnEOg-7zCOQOsohDYfo5rB3Z5vPVjmfbZvW1t3JjMbAOSNJ2FN3B0raxjmrdLazphJ2nwHJeotZbzE7Wuzw2wO-MXUhvs3_9C_0dHFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619950738</pqid></control><display><type>article</type><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Long, Weilin ; Gao, Yi</creator><contributor>Ding, Baiyuan ; Baiyuan Ding</contributor><creatorcontrib>Long, Weilin ; Gao, Yi ; Ding, Baiyuan ; Baiyuan Ding</creatorcontrib><description>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/5379646</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Automation ; Classification ; Education ; Efficiency ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Model accuracy ; Mutation ; Optimization ; Population ; Support vector machines ; Systems development ; Teachers</subject><ispartof>Scientific programming, 2022-01, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Weilin Long and Yi Gao.</rights><rights>Copyright © 2022 Weilin Long and Yi Gao. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</citedby><orcidid>0000-0003-0374-9618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Ding, Baiyuan</contributor><contributor>Baiyuan Ding</contributor><creatorcontrib>Long, Weilin</creatorcontrib><creatorcontrib>Gao, Yi</creatorcontrib><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><title>Scientific programming</title><description>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Classification</subject><subject>Education</subject><subject>Efficiency</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Model accuracy</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Population</subject><subject>Support vector machines</subject><subject>Systems development</subject><subject>Teachers</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1PwzAMhiMEEmNw4wdE4ghlcdq0zXFsAyYN7TBA3Ko0TbZM_RhJChq_npbtzMmvpce2_CB0DeQegLERJZSOWJjwOIpP0ADShAUc-MdplwlLA06j6BxdOLclBFIgZIDysfVGG2lEiee1V2Vp1qqWCs-KVgpvmhqv9s6rCj8Ipwrc9VOjtbKq9v3M7Ksp2z9sXK4ba_ymwr7By503lflRePX-conOtCidujrWIXp7nL1OnoPF8mk-GS8CGYaJDxISA6MsZClorvOi-0WJmKk8B6Y0I1TSXAtNopiDTAnEOg-7zCOQOsohDYfo5rB3Z5vPVjmfbZvW1t3JjMbAOSNJ2FN3B0raxjmrdLazphJ2nwHJeotZbzE7Wuzw2wO-MXUhvs3_9C_0dHFg</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Long, Weilin</creator><creator>Gao, Yi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0374-9618</orcidid></search><sort><creationdate>20220107</creationdate><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><author>Long, Weilin ; Gao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Classification</topic><topic>Education</topic><topic>Efficiency</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Model accuracy</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Population</topic><topic>Support vector machines</topic><topic>Systems development</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Weilin</creatorcontrib><creatorcontrib>Gao, Yi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Weilin</au><au>Gao, Yi</au><au>Ding, Baiyuan</au><au>Baiyuan Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</atitle><jtitle>Scientific programming</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5379646</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0374-9618</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1058-9244 |
ispartof | Scientific programming, 2022-01, Vol.2022, p.1-7 |
issn | 1058-9244 1875-919X |
language | eng |
recordid | cdi_proquest_journals_2619950738 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Artificial intelligence Automation Classification Education Efficiency Evolutionary algorithms Evolutionary computation Genetic algorithms Model accuracy Mutation Optimization Population Support vector machines Systems development Teachers |
title | Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Education%20System%20Based%20on%20Differential%20Evolution%20Algorithm%20to%20Optimize%20SVM&rft.jtitle=Scientific%20programming&rft.au=Long,%20Weilin&rft.date=2022-01-07&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/5379646&rft_dat=%3Cproquest_cross%3E2619950738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619950738&rft_id=info:pmid/&rfr_iscdi=true |