Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM

The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2022-01, Vol.2022, p.1-7
Hauptverfasser: Long, Weilin, Gao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Scientific programming
container_volume 2022
creator Long, Weilin
Gao, Yi
description The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.
doi_str_mv 10.1155/2022/5379646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619950738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619950738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmNw4wdE4ghlcdq0zXFsAyYN7TBA3Ko0TbZM_RhJChq_npbtzMmvpce2_CB0DeQegLERJZSOWJjwOIpP0ADShAUc-MdplwlLA06j6BxdOLclBFIgZIDysfVGG2lEiee1V2Vp1qqWCs-KVgpvmhqv9s6rCj8Ipwrc9VOjtbKq9v3M7Ksp2z9sXK4ba_ymwr7By503lflRePX-conOtCidujrWIXp7nL1OnoPF8mk-GS8CGYaJDxISA6MsZClorvOi-0WJmKk8B6Y0I1TSXAtNopiDTAnEOg-7zCOQOsohDYfo5rB3Z5vPVjmfbZvW1t3JjMbAOSNJ2FN3B0raxjmrdLazphJ2nwHJeotZbzE7Wuzw2wO-MXUhvs3_9C_0dHFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619950738</pqid></control><display><type>article</type><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Long, Weilin ; Gao, Yi</creator><contributor>Ding, Baiyuan ; Baiyuan Ding</contributor><creatorcontrib>Long, Weilin ; Gao, Yi ; Ding, Baiyuan ; Baiyuan Ding</creatorcontrib><description>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</description><identifier>ISSN: 1058-9244</identifier><identifier>EISSN: 1875-919X</identifier><identifier>DOI: 10.1155/2022/5379646</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial intelligence ; Automation ; Classification ; Education ; Efficiency ; Evolutionary algorithms ; Evolutionary computation ; Genetic algorithms ; Model accuracy ; Mutation ; Optimization ; Population ; Support vector machines ; Systems development ; Teachers</subject><ispartof>Scientific programming, 2022-01, Vol.2022, p.1-7</ispartof><rights>Copyright © 2022 Weilin Long and Yi Gao.</rights><rights>Copyright © 2022 Weilin Long and Yi Gao. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</citedby><orcidid>0000-0003-0374-9618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Ding, Baiyuan</contributor><contributor>Baiyuan Ding</contributor><creatorcontrib>Long, Weilin</creatorcontrib><creatorcontrib>Gao, Yi</creatorcontrib><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><title>Scientific programming</title><description>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Classification</subject><subject>Education</subject><subject>Efficiency</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Model accuracy</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Population</subject><subject>Support vector machines</subject><subject>Systems development</subject><subject>Teachers</subject><issn>1058-9244</issn><issn>1875-919X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1PwzAMhiMEEmNw4wdE4ghlcdq0zXFsAyYN7TBA3Ko0TbZM_RhJChq_npbtzMmvpce2_CB0DeQegLERJZSOWJjwOIpP0ADShAUc-MdplwlLA06j6BxdOLclBFIgZIDysfVGG2lEiee1V2Vp1qqWCs-KVgpvmhqv9s6rCj8Ipwrc9VOjtbKq9v3M7Ksp2z9sXK4ba_ymwr7By503lflRePX-conOtCidujrWIXp7nL1OnoPF8mk-GS8CGYaJDxISA6MsZClorvOi-0WJmKk8B6Y0I1TSXAtNopiDTAnEOg-7zCOQOsohDYfo5rB3Z5vPVjmfbZvW1t3JjMbAOSNJ2FN3B0raxjmrdLazphJ2nwHJeotZbzE7Wuzw2wO-MXUhvs3_9C_0dHFg</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Long, Weilin</creator><creator>Gao, Yi</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0374-9618</orcidid></search><sort><creationdate>20220107</creationdate><title>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</title><author>Long, Weilin ; Gao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-70615253581f9fbd022ea65ebb15ef502c2bfaf04691c8016fb3469941cf4b183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Classification</topic><topic>Education</topic><topic>Efficiency</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Model accuracy</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Population</topic><topic>Support vector machines</topic><topic>Systems development</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Weilin</creatorcontrib><creatorcontrib>Gao, Yi</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scientific programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Weilin</au><au>Gao, Yi</au><au>Ding, Baiyuan</au><au>Baiyuan Ding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM</atitle><jtitle>Scientific programming</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1058-9244</issn><eissn>1875-919X</eissn><abstract>The artificial intelligence education system promotes the rooting of artificial intelligence in the education field and accelerates its entry into the era of intelligent education. This article focuses on the development of the artificial intelligence education system and proposes an artificial intelligence education system based on differential evolution algorithm optimization support vector machine. First, the processing of educational demand information data is automated, then a differential evolution algorithm is built to optimize the support vector machine model, and the model is used to implement various educational tasks to achieve automated education. The test results show that the model classification accuracy, classification recall rate, classification accuracy rate, and F1-score value are 4 items. Performances have been improved to improve the efficiency of education work and provide a reference for exploring the application and practice of artificial intelligence in education.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/5379646</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0374-9618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1058-9244
ispartof Scientific programming, 2022-01, Vol.2022, p.1-7
issn 1058-9244
1875-919X
language eng
recordid cdi_proquest_journals_2619950738
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Artificial intelligence
Automation
Classification
Education
Efficiency
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Model accuracy
Mutation
Optimization
Population
Support vector machines
Systems development
Teachers
title Artificial Intelligence Education System Based on Differential Evolution Algorithm to Optimize SVM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Education%20System%20Based%20on%20Differential%20Evolution%20Algorithm%20to%20Optimize%20SVM&rft.jtitle=Scientific%20programming&rft.au=Long,%20Weilin&rft.date=2022-01-07&rft.volume=2022&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1058-9244&rft.eissn=1875-919X&rft_id=info:doi/10.1155/2022/5379646&rft_dat=%3Cproquest_cross%3E2619950738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619950738&rft_id=info:pmid/&rfr_iscdi=true