Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect

For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-01, Vol.2022, p.1-11
Hauptverfasser: Xia, Saiqiang, Zhang, Chaowei, Cai, Wanyong, Yang, Jun, Hua, Liangfa, Wei, Xu, Jiang, Haiman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Xia, Saiqiang
Zhang, Chaowei
Cai, Wanyong
Yang, Jun
Hua, Liangfa
Wei, Xu
Jiang, Haiman
description For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. Through the characteristics analysis of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation bandwidth, and second central moment. Then, a support vector machine model will be applied to the classification of the three different types of aircraft. Compared with the conventional method, the proposed method has better classification performance and can significantly improve the classification probability of aircraft target. The simulations are carried out to validate the effectiveness of the proposed method.
doi_str_mv 10.1155/2022/3154854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619949918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619949918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-91ee26b04997c869e52b98b49e57f6c581d6102631360f88cdb5efbc9f996fdd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4wdY4ggBP2LHPpZQHlIBCRWJW-T4QV2FONgpFf-eRO2Z045W345mB4BzjK4xZuyGIEJuKGa5YPkBmGDGacZwXhwOGpE8w4R-HIOTlNYIEcywmAA781FH5Xq4VPHT9rBsVEreea16H1r4bPtVMNCFCMvQ_th23KoGvqgYw7ZWrYFvyqgIb1WyBo4XXseQ3YWua2yEc-es7k_BkVNNsmf7OQXv9_Nl-ZgtXh-eytki05QWfSaxtYTXKJey0IJLy0gtRZ0PonBcM4ENHx7hFFOOnBDa1My6WksnJXfG0Cm42Pl2MXxvbOqrddjEIW-qCMdSDsZYDNTVjhqCphStq7rov1T8rTCqxiKrschqX-SAX-7wlW-N2vr_6T9AAXJy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619949918</pqid></control><display><type>article</type><title>Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Xia, Saiqiang ; Zhang, Chaowei ; Cai, Wanyong ; Yang, Jun ; Hua, Liangfa ; Wei, Xu ; Jiang, Haiman</creator><contributor>Wen, Fangqing ; Fangqing Wen</contributor><creatorcontrib>Xia, Saiqiang ; Zhang, Chaowei ; Cai, Wanyong ; Yang, Jun ; Hua, Liangfa ; Wei, Xu ; Jiang, Haiman ; Wen, Fangqing ; Fangqing Wen</creatorcontrib><description>For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. Through the characteristics analysis of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation bandwidth, and second central moment. Then, a support vector machine model will be applied to the classification of the three different types of aircraft. Compared with the conventional method, the proposed method has better classification performance and can significantly improve the classification probability of aircraft target. The simulations are carried out to validate the effectiveness of the proposed method.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/3154854</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Aircraft ; Algorithms ; Bandwidths ; Classification ; Doppler effect ; Feature extraction ; Flicker ; Fractal geometry ; Fractals ; Helicopters ; Jet aircraft ; Mathematical problems ; Narrowband ; Noise ; Radar equipment ; Simulation ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2022-01, Vol.2022, p.1-11</ispartof><rights>Copyright © 2022 Saiqiang Xia et al.</rights><rights>Copyright © 2022 Saiqiang Xia et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-91ee26b04997c869e52b98b49e57f6c581d6102631360f88cdb5efbc9f996fdd3</citedby><cites>FETCH-LOGICAL-c337t-91ee26b04997c869e52b98b49e57f6c581d6102631360f88cdb5efbc9f996fdd3</cites><orcidid>0000-0003-3416-8197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><contributor>Wen, Fangqing</contributor><contributor>Fangqing Wen</contributor><creatorcontrib>Xia, Saiqiang</creatorcontrib><creatorcontrib>Zhang, Chaowei</creatorcontrib><creatorcontrib>Cai, Wanyong</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Hua, Liangfa</creatorcontrib><creatorcontrib>Wei, Xu</creatorcontrib><creatorcontrib>Jiang, Haiman</creatorcontrib><title>Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect</title><title>Mathematical problems in engineering</title><description>For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. Through the characteristics analysis of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation bandwidth, and second central moment. Then, a support vector machine model will be applied to the classification of the three different types of aircraft. Compared with the conventional method, the proposed method has better classification performance and can significantly improve the classification probability of aircraft target. The simulations are carried out to validate the effectiveness of the proposed method.</description><subject>Aircraft</subject><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Classification</subject><subject>Doppler effect</subject><subject>Feature extraction</subject><subject>Flicker</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Helicopters</subject><subject>Jet aircraft</subject><subject>Mathematical problems</subject><subject>Narrowband</subject><subject>Noise</subject><subject>Radar equipment</subject><subject>Simulation</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtPwzAQhC0EEqVw4wdY4ggBP2LHPpZQHlIBCRWJW-T4QV2FONgpFf-eRO2Z045W345mB4BzjK4xZuyGIEJuKGa5YPkBmGDGacZwXhwOGpE8w4R-HIOTlNYIEcywmAA781FH5Xq4VPHT9rBsVEreea16H1r4bPtVMNCFCMvQ_th23KoGvqgYw7ZWrYFvyqgIb1WyBo4XXseQ3YWua2yEc-es7k_BkVNNsmf7OQXv9_Nl-ZgtXh-eytki05QWfSaxtYTXKJey0IJLy0gtRZ0PonBcM4ENHx7hFFOOnBDa1My6WksnJXfG0Cm42Pl2MXxvbOqrddjEIW-qCMdSDsZYDNTVjhqCphStq7rov1T8rTCqxiKrschqX-SAX-7wlW-N2vr_6T9AAXJy</recordid><startdate>20220104</startdate><enddate>20220104</enddate><creator>Xia, Saiqiang</creator><creator>Zhang, Chaowei</creator><creator>Cai, Wanyong</creator><creator>Yang, Jun</creator><creator>Hua, Liangfa</creator><creator>Wei, Xu</creator><creator>Jiang, Haiman</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3416-8197</orcidid></search><sort><creationdate>20220104</creationdate><title>Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect</title><author>Xia, Saiqiang ; Zhang, Chaowei ; Cai, Wanyong ; Yang, Jun ; Hua, Liangfa ; Wei, Xu ; Jiang, Haiman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-91ee26b04997c869e52b98b49e57f6c581d6102631360f88cdb5efbc9f996fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Classification</topic><topic>Doppler effect</topic><topic>Feature extraction</topic><topic>Flicker</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Helicopters</topic><topic>Jet aircraft</topic><topic>Mathematical problems</topic><topic>Narrowband</topic><topic>Noise</topic><topic>Radar equipment</topic><topic>Simulation</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Saiqiang</creatorcontrib><creatorcontrib>Zhang, Chaowei</creatorcontrib><creatorcontrib>Cai, Wanyong</creatorcontrib><creatorcontrib>Yang, Jun</creatorcontrib><creatorcontrib>Hua, Liangfa</creatorcontrib><creatorcontrib>Wei, Xu</creatorcontrib><creatorcontrib>Jiang, Haiman</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Saiqiang</au><au>Zhang, Chaowei</au><au>Cai, Wanyong</au><au>Yang, Jun</au><au>Hua, Liangfa</au><au>Wei, Xu</au><au>Jiang, Haiman</au><au>Wen, Fangqing</au><au>Fangqing Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-01-04</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>For a conventional narrowband radar system, its insufficient bandwidth usually leads to the lack of detectable information of the target, and it is difficult for the radar to classify the target types, such as rotor helicopter, propeller aircraft, and jet aircraft. To address the classification problem of three different types of aircraft target, a joint multifeature classification method based on the micro-Doppler effect in the echo caused by the target micromotion is proposed in this paper. Through the characteristics analysis of the target simulation echoes obtained from the target scattering point model, four features with obvious distinguishability are extracted from the time domain and frequency domain, respectively, that is, flicker interval, fractal dimension, modulation bandwidth, and second central moment. Then, a support vector machine model will be applied to the classification of the three different types of aircraft. Compared with the conventional method, the proposed method has better classification performance and can significantly improve the classification probability of aircraft target. The simulations are carried out to validate the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/3154854</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3416-8197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-01, Vol.2022, p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2619949918
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Aircraft
Algorithms
Bandwidths
Classification
Doppler effect
Feature extraction
Flicker
Fractal geometry
Fractals
Helicopters
Jet aircraft
Mathematical problems
Narrowband
Noise
Radar equipment
Simulation
Support vector machines
title Aircraft Target Classification Method for Conventional Narrowband Radar Based on Micro-Doppler Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aircraft%20Target%20Classification%20Method%20for%20Conventional%20Narrowband%20Radar%20Based%20on%20Micro-Doppler%20Effect&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xia,%20Saiqiang&rft.date=2022-01-04&rft.volume=2022&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/3154854&rft_dat=%3Cproquest_cross%3E2619949918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619949918&rft_id=info:pmid/&rfr_iscdi=true