Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect

Clarifying the spatiotemporal heterogeneity, convergence and its impact factors of carbon emissions is not only beneficial to the formulation of differential carbon reduction policies, but also to achieve regional coordinated development. As the second largest source of carbon emissions, agricultura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental impact assessment review 2022-01, Vol.92, p.106699, Article 106699
Hauptverfasser: Cui, Yu, Khan, Sufyan Ullah, Deng, Yue, Zhao, Minjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106699
container_title Environmental impact assessment review
container_volume 92
creator Cui, Yu
Khan, Sufyan Ullah
Deng, Yue
Zhao, Minjuan
description Clarifying the spatiotemporal heterogeneity, convergence and its impact factors of carbon emissions is not only beneficial to the formulation of differential carbon reduction policies, but also to achieve regional coordinated development. As the second largest source of carbon emissions, agricultural carbon emissions have attracted extensive attention practically and academically. The current study used the panel data of 31 provinces in China from 1997 to 2017, combining with the carbon emission accounting formula, Theil index method and convergence model, to analyze the spatiotemporal heterogeneity, convergence and its impact factors of carbon emission intensity (CEI) and carbon emission per capita (CEPC) of planting industry considering carbon sink effect. The results revealed that the total carbon emission shows a downward trend during the investigation, while evident differences exist in different regions and dimensions mainly caused by the inter-regional differences. The CEI Theil index demonstrated gradient decreasing pattern of “western (0.14) > central (0.09) > eastern (0.05) > northeast (0.03)” and the CEPC Theil index showed the distribution characteristics of “northeast (0.09) > central (0.08) > western (0.08) > eastern (0.05)”. Convergence existed in the whole country and in the four regions when taking CEI as the estimation index, while different divergence characteristics appeared (except central) when CEPC is applied. The impact effects of initial CEI/CEPC, rural GDP per capita, agricultural financial support level, agricultural mechanization degree, agricultural structure, rural population size and urbanization level have spatiotemporal heterogeneity. [Display omitted] •Agricultural carbon emission is assessed with consideration of carbon sink effect.•CEI Theil index is as western (0.14) > central (0.09) > eastern (0.05) > northeast (0.03).•CEPC Theil index is as northeast (0.09) > central (0.08) > western (0.08) > eastern (0.05).•The convergence features of CEI and CEPC varies under different dimensions.•The impact effects exist significant spatiotemporal heterogeneity.
doi_str_mv 10.1016/j.eiar.2021.106699
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619669852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195925521001499</els_id><sourcerecordid>2619669852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-847d01fb13a5c72296e430636ffed1c289d24903a4d803d7c0c1bb027c5d7e6f3</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBBILIEf4GSJK7P4MeMZIy4o4iVFSqSEs-W1e0IvWXtoOyvlj_hMPCxcOHBxu9tV1e0uxl5KsZVCmjf7LaCnrRJKtoIx1j5iGzmNujO9Vo_ZRkg7dFYNw1P2rJS9aCRrpw37eb34irnCYcnk7_g3qED5FhJgfXjNQ05HoJYG4D5FjrVwPCw-VD63I1N5y6-AygKh4hF4nnnwtMuJwwFLwXbBVCGVpvZb4N_XBajVFqx-7VUwAmG6_QsrmL5zmOem_pw9mf1dgRd_4hn7-vHDzfnn7uLy05fz9xdd0Gqq3dSPUch5J7UfwqiUNdBrYbRpIlEGNdmoeiu07-MkdByDCHK3E2oMQxzBzPqMvTrpLpR_3EOpbp_vKbWWThlp22qnQTWUOqEC5VIIZrcQHjw9OCnc6ojbu9URtzriTo400rsTCdr8RwRyJeC62ojUfuhixv_RfwFaQZjs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619669852</pqid></control><display><type>article</type><title>Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>Cui, Yu ; Khan, Sufyan Ullah ; Deng, Yue ; Zhao, Minjuan</creator><creatorcontrib>Cui, Yu ; Khan, Sufyan Ullah ; Deng, Yue ; Zhao, Minjuan</creatorcontrib><description>Clarifying the spatiotemporal heterogeneity, convergence and its impact factors of carbon emissions is not only beneficial to the formulation of differential carbon reduction policies, but also to achieve regional coordinated development. As the second largest source of carbon emissions, agricultural carbon emissions have attracted extensive attention practically and academically. The current study used the panel data of 31 provinces in China from 1997 to 2017, combining with the carbon emission accounting formula, Theil index method and convergence model, to analyze the spatiotemporal heterogeneity, convergence and its impact factors of carbon emission intensity (CEI) and carbon emission per capita (CEPC) of planting industry considering carbon sink effect. The results revealed that the total carbon emission shows a downward trend during the investigation, while evident differences exist in different regions and dimensions mainly caused by the inter-regional differences. The CEI Theil index demonstrated gradient decreasing pattern of “western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03)” and the CEPC Theil index showed the distribution characteristics of “northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05)”. Convergence existed in the whole country and in the four regions when taking CEI as the estimation index, while different divergence characteristics appeared (except central) when CEPC is applied. The impact effects of initial CEI/CEPC, rural GDP per capita, agricultural financial support level, agricultural mechanization degree, agricultural structure, rural population size and urbanization level have spatiotemporal heterogeneity. [Display omitted] •Agricultural carbon emission is assessed with consideration of carbon sink effect.•CEI Theil index is as western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03).•CEPC Theil index is as northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05).•The convergence features of CEI and CEPC varies under different dimensions.•The impact effects exist significant spatiotemporal heterogeneity.</description><identifier>ISSN: 0195-9255</identifier><identifier>EISSN: 1873-6432</identifier><identifier>DOI: 10.1016/j.eiar.2021.106699</identifier><language>eng</language><publisher>Oxford: Elsevier Inc</publisher><subject>Accounting ; Agricultural mechanization ; Agriculture ; Automation ; Carbon ; Carbon emission ; Carbon sink ; Carbon sinks ; Convergence ; Emission analysis ; Emissions ; Financial support ; Heterogeneity ; Impact factors ; Indexes ; Mechanization ; Panel data ; Per capita ; Population number ; Provinces ; Regional development ; Regional differences ; Regional variations ; Rural population ; Rural populations ; Spatiotemporal heterogeneity ; Theil index ; Urbanization</subject><ispartof>Environmental impact assessment review, 2022-01, Vol.92, p.106699, Article 106699</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-847d01fb13a5c72296e430636ffed1c289d24903a4d803d7c0c1bb027c5d7e6f3</citedby><cites>FETCH-LOGICAL-c328t-847d01fb13a5c72296e430636ffed1c289d24903a4d803d7c0c1bb027c5d7e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0195925521001499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27843,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Khan, Sufyan Ullah</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Zhao, Minjuan</creatorcontrib><title>Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect</title><title>Environmental impact assessment review</title><description>Clarifying the spatiotemporal heterogeneity, convergence and its impact factors of carbon emissions is not only beneficial to the formulation of differential carbon reduction policies, but also to achieve regional coordinated development. As the second largest source of carbon emissions, agricultural carbon emissions have attracted extensive attention practically and academically. The current study used the panel data of 31 provinces in China from 1997 to 2017, combining with the carbon emission accounting formula, Theil index method and convergence model, to analyze the spatiotemporal heterogeneity, convergence and its impact factors of carbon emission intensity (CEI) and carbon emission per capita (CEPC) of planting industry considering carbon sink effect. The results revealed that the total carbon emission shows a downward trend during the investigation, while evident differences exist in different regions and dimensions mainly caused by the inter-regional differences. The CEI Theil index demonstrated gradient decreasing pattern of “western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03)” and the CEPC Theil index showed the distribution characteristics of “northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05)”. Convergence existed in the whole country and in the four regions when taking CEI as the estimation index, while different divergence characteristics appeared (except central) when CEPC is applied. The impact effects of initial CEI/CEPC, rural GDP per capita, agricultural financial support level, agricultural mechanization degree, agricultural structure, rural population size and urbanization level have spatiotemporal heterogeneity. [Display omitted] •Agricultural carbon emission is assessed with consideration of carbon sink effect.•CEI Theil index is as western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03).•CEPC Theil index is as northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05).•The convergence features of CEI and CEPC varies under different dimensions.•The impact effects exist significant spatiotemporal heterogeneity.</description><subject>Accounting</subject><subject>Agricultural mechanization</subject><subject>Agriculture</subject><subject>Automation</subject><subject>Carbon</subject><subject>Carbon emission</subject><subject>Carbon sink</subject><subject>Carbon sinks</subject><subject>Convergence</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Financial support</subject><subject>Heterogeneity</subject><subject>Impact factors</subject><subject>Indexes</subject><subject>Mechanization</subject><subject>Panel data</subject><subject>Per capita</subject><subject>Population number</subject><subject>Provinces</subject><subject>Regional development</subject><subject>Regional differences</subject><subject>Regional variations</subject><subject>Rural population</subject><subject>Rural populations</subject><subject>Spatiotemporal heterogeneity</subject><subject>Theil index</subject><subject>Urbanization</subject><issn>0195-9255</issn><issn>1873-6432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UctuFDEQtBBILIEf4GSJK7P4MeMZIy4o4iVFSqSEs-W1e0IvWXtoOyvlj_hMPCxcOHBxu9tV1e0uxl5KsZVCmjf7LaCnrRJKtoIx1j5iGzmNujO9Vo_ZRkg7dFYNw1P2rJS9aCRrpw37eb34irnCYcnk7_g3qED5FhJgfXjNQ05HoJYG4D5FjrVwPCw-VD63I1N5y6-AygKh4hF4nnnwtMuJwwFLwXbBVCGVpvZb4N_XBajVFqx-7VUwAmG6_QsrmL5zmOem_pw9mf1dgRd_4hn7-vHDzfnn7uLy05fz9xdd0Gqq3dSPUch5J7UfwqiUNdBrYbRpIlEGNdmoeiu07-MkdByDCHK3E2oMQxzBzPqMvTrpLpR_3EOpbp_vKbWWThlp22qnQTWUOqEC5VIIZrcQHjw9OCnc6ojbu9URtzriTo400rsTCdr8RwRyJeC62ojUfuhixv_RfwFaQZjs</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Cui, Yu</creator><creator>Khan, Sufyan Ullah</creator><creator>Deng, Yue</creator><creator>Zhao, Minjuan</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>FR3</scope><scope>JBE</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>202201</creationdate><title>Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect</title><author>Cui, Yu ; Khan, Sufyan Ullah ; Deng, Yue ; Zhao, Minjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-847d01fb13a5c72296e430636ffed1c289d24903a4d803d7c0c1bb027c5d7e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accounting</topic><topic>Agricultural mechanization</topic><topic>Agriculture</topic><topic>Automation</topic><topic>Carbon</topic><topic>Carbon emission</topic><topic>Carbon sink</topic><topic>Carbon sinks</topic><topic>Convergence</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Financial support</topic><topic>Heterogeneity</topic><topic>Impact factors</topic><topic>Indexes</topic><topic>Mechanization</topic><topic>Panel data</topic><topic>Per capita</topic><topic>Population number</topic><topic>Provinces</topic><topic>Regional development</topic><topic>Regional differences</topic><topic>Regional variations</topic><topic>Rural population</topic><topic>Rural populations</topic><topic>Spatiotemporal heterogeneity</topic><topic>Theil index</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yu</creatorcontrib><creatorcontrib>Khan, Sufyan Ullah</creatorcontrib><creatorcontrib>Deng, Yue</creatorcontrib><creatorcontrib>Zhao, Minjuan</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental impact assessment review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yu</au><au>Khan, Sufyan Ullah</au><au>Deng, Yue</au><au>Zhao, Minjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect</atitle><jtitle>Environmental impact assessment review</jtitle><date>2022-01</date><risdate>2022</risdate><volume>92</volume><spage>106699</spage><pages>106699-</pages><artnum>106699</artnum><issn>0195-9255</issn><eissn>1873-6432</eissn><abstract>Clarifying the spatiotemporal heterogeneity, convergence and its impact factors of carbon emissions is not only beneficial to the formulation of differential carbon reduction policies, but also to achieve regional coordinated development. As the second largest source of carbon emissions, agricultural carbon emissions have attracted extensive attention practically and academically. The current study used the panel data of 31 provinces in China from 1997 to 2017, combining with the carbon emission accounting formula, Theil index method and convergence model, to analyze the spatiotemporal heterogeneity, convergence and its impact factors of carbon emission intensity (CEI) and carbon emission per capita (CEPC) of planting industry considering carbon sink effect. The results revealed that the total carbon emission shows a downward trend during the investigation, while evident differences exist in different regions and dimensions mainly caused by the inter-regional differences. The CEI Theil index demonstrated gradient decreasing pattern of “western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03)” and the CEPC Theil index showed the distribution characteristics of “northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05)”. Convergence existed in the whole country and in the four regions when taking CEI as the estimation index, while different divergence characteristics appeared (except central) when CEPC is applied. The impact effects of initial CEI/CEPC, rural GDP per capita, agricultural financial support level, agricultural mechanization degree, agricultural structure, rural population size and urbanization level have spatiotemporal heterogeneity. [Display omitted] •Agricultural carbon emission is assessed with consideration of carbon sink effect.•CEI Theil index is as western (0.14) &gt; central (0.09) &gt; eastern (0.05) &gt; northeast (0.03).•CEPC Theil index is as northeast (0.09) &gt; central (0.08) &gt; western (0.08) &gt; eastern (0.05).•The convergence features of CEI and CEPC varies under different dimensions.•The impact effects exist significant spatiotemporal heterogeneity.</abstract><cop>Oxford</cop><pub>Elsevier Inc</pub><doi>10.1016/j.eiar.2021.106699</doi></addata></record>
fulltext fulltext
identifier ISSN: 0195-9255
ispartof Environmental impact assessment review, 2022-01, Vol.92, p.106699, Article 106699
issn 0195-9255
1873-6432
language eng
recordid cdi_proquest_journals_2619669852
source PAIS Index; Elsevier ScienceDirect Journals
subjects Accounting
Agricultural mechanization
Agriculture
Automation
Carbon
Carbon emission
Carbon sink
Carbon sinks
Convergence
Emission analysis
Emissions
Financial support
Heterogeneity
Impact factors
Indexes
Mechanization
Panel data
Per capita
Population number
Provinces
Regional development
Regional differences
Regional variations
Rural population
Rural populations
Spatiotemporal heterogeneity
Theil index
Urbanization
title Spatiotemporal heterogeneity, convergence and its impact factors: Perspective of carbon emission intensity and carbon emission per capita considering carbon sink effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatiotemporal%20heterogeneity,%20convergence%20and%20its%20impact%20factors:%20Perspective%20of%20carbon%20emission%20intensity%20and%20carbon%20emission%20per%20capita%20considering%20carbon%20sink%20effect&rft.jtitle=Environmental%20impact%20assessment%20review&rft.au=Cui,%20Yu&rft.date=2022-01&rft.volume=92&rft.spage=106699&rft.pages=106699-&rft.artnum=106699&rft.issn=0195-9255&rft.eissn=1873-6432&rft_id=info:doi/10.1016/j.eiar.2021.106699&rft_dat=%3Cproquest_cross%3E2619669852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619669852&rft_id=info:pmid/&rft_els_id=S0195925521001499&rfr_iscdi=true