A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\)
We compute a Green's function giving rise to the solution of the Cauchy problem for the source-free Maxwell's equations on a causal domain \(\mathcal{D}\) contained in a geodesically normal domain of the Lorentzian manifold \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\), where \(AdS^5\)...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gobin, Damien Niky Kamran |
description | We compute a Green's function giving rise to the solution of the Cauchy problem for the source-free Maxwell's equations on a causal domain \(\mathcal{D}\) contained in a geodesically normal domain of the Lorentzian manifold \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\), where \(AdS^5\) denotes the simply connected \(5\)-dimensional anti-de-Sitter space-time. Our approach is to formulate the original Cauchy problem as an equivalent Cauchy problem for the Hodge Laplacian on \(\mathcal{D}\) and to seek a solution in the form of a Fourier expansion in terms of the eigenforms of the Hodge Laplacian on \(\mathbb{S}^3\). This gives rise to a sequence of inhomogeneous Cauchy problems governing the form-valued Fourier coefficients corresponding to the Fourier modes and involving operators related to the Hodge Laplacian on \(AdS^5 \times \mathbb{S}^2\), which we solve explicitly by using Riesz distributions and the method of spherical means for differential forms. Finally we put together into the Fourier expansion on \(\mathbb{S}^3\) the modes obtained by this procedure, producing a \(2\)-form on \(\mathcal{D}\subset AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\) which we show to be a solution of the original Cauchy problem for Maxwell's equations. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2619614175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619614175</sourcerecordid><originalsourceid>FETCH-proquest_journals_26196141753</originalsourceid><addsrcrecordid>eNqNjUsLgkAURocgSMr_cKFFtRCcGR-1lOixaVVLUdSuqPjIeVAQ_fcMWrZo9cE5B74RMRjn1Fo7jE2IKWVl2zbzfOa63CBNAAeB2C4k5LrNVNm1kHcCVIEgOy0ytPLBwyl53LGuAXudfCIJQxgug-s5ciFUZYMSwiZRRZo-z6-I_WA8XM3IOE9qieZ3p2S-3122R-smul6jVHE1fLaDiplHNx51qO_y_6o3Iw9Iaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619614175</pqid></control><display><type>article</type><title>A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\)</title><source>Free E- Journals</source><creator>Gobin, Damien ; Niky Kamran</creator><creatorcontrib>Gobin, Damien ; Niky Kamran</creatorcontrib><description>We compute a Green's function giving rise to the solution of the Cauchy problem for the source-free Maxwell's equations on a causal domain \(\mathcal{D}\) contained in a geodesically normal domain of the Lorentzian manifold \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\), where \(AdS^5\) denotes the simply connected \(5\)-dimensional anti-de-Sitter space-time. Our approach is to formulate the original Cauchy problem as an equivalent Cauchy problem for the Hodge Laplacian on \(\mathcal{D}\) and to seek a solution in the form of a Fourier expansion in terms of the eigenforms of the Hodge Laplacian on \(\mathbb{S}^3\). This gives rise to a sequence of inhomogeneous Cauchy problems governing the form-valued Fourier coefficients corresponding to the Fourier modes and involving operators related to the Hodge Laplacian on \(AdS^5 \times \mathbb{S}^2\), which we solve explicitly by using Riesz distributions and the method of spherical means for differential forms. Finally we put together into the Fourier expansion on \(\mathbb{S}^3\) the modes obtained by this procedure, producing a \(2\)-form on \(\mathcal{D}\subset AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\) which we show to be a solution of the original Cauchy problem for Maxwell's equations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cauchy problems ; Domains ; Green's functions ; Manifolds (mathematics) ; Mathematical analysis ; Maxwell's equations ; Operators (mathematics)</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gobin, Damien</creatorcontrib><creatorcontrib>Niky Kamran</creatorcontrib><title>A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\)</title><title>arXiv.org</title><description>We compute a Green's function giving rise to the solution of the Cauchy problem for the source-free Maxwell's equations on a causal domain \(\mathcal{D}\) contained in a geodesically normal domain of the Lorentzian manifold \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\), where \(AdS^5\) denotes the simply connected \(5\)-dimensional anti-de-Sitter space-time. Our approach is to formulate the original Cauchy problem as an equivalent Cauchy problem for the Hodge Laplacian on \(\mathcal{D}\) and to seek a solution in the form of a Fourier expansion in terms of the eigenforms of the Hodge Laplacian on \(\mathbb{S}^3\). This gives rise to a sequence of inhomogeneous Cauchy problems governing the form-valued Fourier coefficients corresponding to the Fourier modes and involving operators related to the Hodge Laplacian on \(AdS^5 \times \mathbb{S}^2\), which we solve explicitly by using Riesz distributions and the method of spherical means for differential forms. Finally we put together into the Fourier expansion on \(\mathbb{S}^3\) the modes obtained by this procedure, producing a \(2\)-form on \(\mathcal{D}\subset AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\) which we show to be a solution of the original Cauchy problem for Maxwell's equations.</description><subject>Cauchy problems</subject><subject>Domains</subject><subject>Green's functions</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Maxwell's equations</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsLgkAURocgSMr_cKFFtRCcGR-1lOixaVVLUdSuqPjIeVAQ_fcMWrZo9cE5B74RMRjn1Fo7jE2IKWVl2zbzfOa63CBNAAeB2C4k5LrNVNm1kHcCVIEgOy0ytPLBwyl53LGuAXudfCIJQxgug-s5ciFUZYMSwiZRRZo-z6-I_WA8XM3IOE9qieZ3p2S-3122R-smul6jVHE1fLaDiplHNx51qO_y_6o3Iw9Iaw</recordid><startdate>20220113</startdate><enddate>20220113</enddate><creator>Gobin, Damien</creator><creator>Niky Kamran</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220113</creationdate><title>A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\)</title><author>Gobin, Damien ; Niky Kamran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26196141753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cauchy problems</topic><topic>Domains</topic><topic>Green's functions</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Maxwell's equations</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Gobin, Damien</creatorcontrib><creatorcontrib>Niky Kamran</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gobin, Damien</au><au>Niky Kamran</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\)</atitle><jtitle>arXiv.org</jtitle><date>2022-01-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We compute a Green's function giving rise to the solution of the Cauchy problem for the source-free Maxwell's equations on a causal domain \(\mathcal{D}\) contained in a geodesically normal domain of the Lorentzian manifold \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\), where \(AdS^5\) denotes the simply connected \(5\)-dimensional anti-de-Sitter space-time. Our approach is to formulate the original Cauchy problem as an equivalent Cauchy problem for the Hodge Laplacian on \(\mathcal{D}\) and to seek a solution in the form of a Fourier expansion in terms of the eigenforms of the Hodge Laplacian on \(\mathbb{S}^3\). This gives rise to a sequence of inhomogeneous Cauchy problems governing the form-valued Fourier coefficients corresponding to the Fourier modes and involving operators related to the Hodge Laplacian on \(AdS^5 \times \mathbb{S}^2\), which we solve explicitly by using Riesz distributions and the method of spherical means for differential forms. Finally we put together into the Fourier expansion on \(\mathbb{S}^3\) the modes obtained by this procedure, producing a \(2\)-form on \(\mathcal{D}\subset AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\) which we show to be a solution of the original Cauchy problem for Maxwell's equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2619614175 |
source | Free E- Journals |
subjects | Cauchy problems Domains Green's functions Manifolds (mathematics) Mathematical analysis Maxwell's equations Operators (mathematics) |
title | A Green's function for the source-free Maxwell equations on \(AdS^5 \times \mathbb{S}^2 \times \mathbb{S}^3\) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Green's%20function%20for%20the%20source-free%20Maxwell%20equations%20on%20%5C(AdS%5E5%20%5Ctimes%20%5Cmathbb%7BS%7D%5E2%20%5Ctimes%20%5Cmathbb%7BS%7D%5E3%5C)&rft.jtitle=arXiv.org&rft.au=Gobin,%20Damien&rft.date=2022-01-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2619614175%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619614175&rft_id=info:pmid/&rfr_iscdi=true |