The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS

A novel approach in addressing cyclone global navigation satellite system (CyGNSS) intersatellite and GPS-related calibration issues is proposed, based on a track-wise \sigma ^{o} bias correction method. This method makes use of both ancillary data from numerical weather prediction models and a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-24
Hauptverfasser: Said, Faozi, Jelenak, Zorana, Park, Jeonghwan, Chang, Paul S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Said, Faozi
Jelenak, Zorana
Park, Jeonghwan
Chang, Paul S.
description A novel approach in addressing cyclone global navigation satellite system (CyGNSS) intersatellite and GPS-related calibration issues is proposed, based on a track-wise \sigma ^{o} bias correction method. This method makes use of both ancillary data from numerical weather prediction models and a semiempirical geophysical model function. Care is taken, so the track-wise \sigma ^{o} bias correction maintains CyGNSS signal sensitivity. Both intersatellite and GPS-related calibration issues are removed after correction. Long-term \sigma ^{o} downward trend, observed throughout the CyGNSS mission, is greatly reduced. Using the corrected \sigma ^{o} measurements, a wind retrieval method is also presented and its product thoroughly assessed for a three-year period against European Centre for Medium-Range Weather Forecasts (ECMWFs), Advanced Scatterometer (ASCAT) A/B, Advanced Microwave Scanning Radiometer (AMSR)-2, GMI, WindSat, hurricane weather research and forecasting (HWRF) model, and the stepped frequency microwave radiometer (SFMR) winds. The overall wind speed bias and standard deviation of the error (stde) against ECMWF are 0.16 and 1.19 m/s, while these are −0.11 and 1.12 m/s against ASCAT A/B, respectively. The same metrics against AMSR-2/GMI/WindSat (combined) are −0.19 and 1.11 m/s, respectively. The bias and stde against soil moisture active passive (SMAP) are −0.38 and 1.90 m/s, respectively. In the tropical cyclone environment, the bias and stde against HWRF are −0.54 and 2.90 m/s, and −4.71 and 5.88 m/s with SFMR. Finally, CyGNSS wind performance is gauged in the presence of rain. Below 10 m/s, the bias between CyGNSS and ECMWF increases as the rain rate increases. Between 10 and 15 m/s, biases are mostly absent. Above 15 m/s, results are inconclusive due to the low number of collocated rain samples. Overall, the presented CyGNSS wind speed product both exhibits consistency and reliability, showing promise of using GNSS-R derived winds for operational purposes.
doi_str_mv 10.1109/TGRS.2021.3087426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619589767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481894</ieee_id><sourcerecordid>2619589767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-aa15541f75cb48de1e6ef2bcd5c72ecc3e9d6bbd3ddfb56ea2f99a8bd1d41923</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOD9-gHgT8LozJ03T5LIMnYJsshV2GdLk1HVu60w6Yf_ejg2vDhye9z2Hh5AHYEMApp_L8Ww-5IzDMGUqF1xekAFkmUqYFOKSDBhomXCl-TW5iXHFGIgM8gGZlEukk2lR0DJY950smoh00Ww9nWEXGvy1a1qsv9rQdMsNtf3-M7R-7zpaxIgxbnDb0boNdHQYT-bzO3JV23XE-_O8JeXrSzl6Sz6m4_dR8ZG4NJVdYm3_m4A6z1wllEdAiTWvnM9cztG5FLWXVeVT7-sqk2h5rbVVlQcvQPP0ljydaneh_dlj7Myq3Ydtf9FwCTpTOpd5T8GJcqGNMWBtdqHZ2HAwwMzRmjlaM0dr5mytzzyeMg0i_vNaKFBapH9IuWjb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619589767</pqid></control><display><type>article</type><title>The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS</title><source>IEEE Electronic Library (IEL)</source><creator>Said, Faozi ; Jelenak, Zorana ; Park, Jeonghwan ; Chang, Paul S.</creator><creatorcontrib>Said, Faozi ; Jelenak, Zorana ; Park, Jeonghwan ; Chang, Paul S.</creatorcontrib><description><![CDATA[A novel approach in addressing cyclone global navigation satellite system (CyGNSS) intersatellite and GPS-related calibration issues is proposed, based on a track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction method. This method makes use of both ancillary data from numerical weather prediction models and a semiempirical geophysical model function. Care is taken, so the track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction maintains CyGNSS signal sensitivity. Both intersatellite and GPS-related calibration issues are removed after correction. Long-term <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> downward trend, observed throughout the CyGNSS mission, is greatly reduced. Using the corrected <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> measurements, a wind retrieval method is also presented and its product thoroughly assessed for a three-year period against European Centre for Medium-Range Weather Forecasts (ECMWFs), Advanced Scatterometer (ASCAT) A/B, Advanced Microwave Scanning Radiometer (AMSR)-2, GMI, WindSat, hurricane weather research and forecasting (HWRF) model, and the stepped frequency microwave radiometer (SFMR) winds. The overall wind speed bias and standard deviation of the error (stde) against ECMWF are 0.16 and 1.19 m/s, while these are −0.11 and 1.12 m/s against ASCAT A/B, respectively. The same metrics against AMSR-2/GMI/WindSat (combined) are −0.19 and 1.11 m/s, respectively. The bias and stde against soil moisture active passive (SMAP) are −0.38 and 1.90 m/s, respectively. In the tropical cyclone environment, the bias and stde against HWRF are −0.54 and 2.90 m/s, and −4.71 and 5.88 m/s with SFMR. Finally, CyGNSS wind performance is gauged in the presence of rain. Below 10 m/s, the bias between CyGNSS and ECMWF increases as the rain rate increases. Between 10 and 15 m/s, biases are mostly absent. Above 15 m/s, results are inconclusive due to the low number of collocated rain samples. Overall, the presented CyGNSS wind speed product both exhibits consistency and reliability, showing promise of using GNSS-R derived winds for operational purposes.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3087426</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Atmospheric precipitations ; Bias ; Calibration ; Cyclones ; Geophysical measurements ; Global navigation satellite system ; Global Positioning System ; Global positioning systems ; GPS ; Hurricanes ; Meteorological satellites ; Microwave radiometers ; microwave reflectometry ; Navigation ; Navigational satellites ; Numerical prediction ; Numerical weather forecasting ; Prediction models ; Predictive models ; radar measurements ; Radiometers ; Rain ; remote sensing ; Retrieval ; Satellite navigation systems ; scattering ; Scatterometers ; Sea surface ; Soil moisture ; Space vehicles ; Tropical climate ; Tropical cyclones ; Weather ; Weather forecasting ; Wind ; Wind forecasting ; Wind measurement ; Wind speed ; Winds</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-24</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-aa15541f75cb48de1e6ef2bcd5c72ecc3e9d6bbd3ddfb56ea2f99a8bd1d41923</citedby><cites>FETCH-LOGICAL-c336t-aa15541f75cb48de1e6ef2bcd5c72ecc3e9d6bbd3ddfb56ea2f99a8bd1d41923</cites><orcidid>0000-0001-6231-8522 ; 0000-0002-4641-188X ; 0000-0001-5113-0938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481894$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Said, Faozi</creatorcontrib><creatorcontrib>Jelenak, Zorana</creatorcontrib><creatorcontrib>Park, Jeonghwan</creatorcontrib><creatorcontrib>Chang, Paul S.</creatorcontrib><title>The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[A novel approach in addressing cyclone global navigation satellite system (CyGNSS) intersatellite and GPS-related calibration issues is proposed, based on a track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction method. This method makes use of both ancillary data from numerical weather prediction models and a semiempirical geophysical model function. Care is taken, so the track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction maintains CyGNSS signal sensitivity. Both intersatellite and GPS-related calibration issues are removed after correction. Long-term <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> downward trend, observed throughout the CyGNSS mission, is greatly reduced. Using the corrected <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> measurements, a wind retrieval method is also presented and its product thoroughly assessed for a three-year period against European Centre for Medium-Range Weather Forecasts (ECMWFs), Advanced Scatterometer (ASCAT) A/B, Advanced Microwave Scanning Radiometer (AMSR)-2, GMI, WindSat, hurricane weather research and forecasting (HWRF) model, and the stepped frequency microwave radiometer (SFMR) winds. The overall wind speed bias and standard deviation of the error (stde) against ECMWF are 0.16 and 1.19 m/s, while these are −0.11 and 1.12 m/s against ASCAT A/B, respectively. The same metrics against AMSR-2/GMI/WindSat (combined) are −0.19 and 1.11 m/s, respectively. The bias and stde against soil moisture active passive (SMAP) are −0.38 and 1.90 m/s, respectively. In the tropical cyclone environment, the bias and stde against HWRF are −0.54 and 2.90 m/s, and −4.71 and 5.88 m/s with SFMR. Finally, CyGNSS wind performance is gauged in the presence of rain. Below 10 m/s, the bias between CyGNSS and ECMWF increases as the rain rate increases. Between 10 and 15 m/s, biases are mostly absent. Above 15 m/s, results are inconclusive due to the low number of collocated rain samples. Overall, the presented CyGNSS wind speed product both exhibits consistency and reliability, showing promise of using GNSS-R derived winds for operational purposes.]]></description><subject>Algorithms</subject><subject>Atmospheric precipitations</subject><subject>Bias</subject><subject>Calibration</subject><subject>Cyclones</subject><subject>Geophysical measurements</subject><subject>Global navigation satellite system</subject><subject>Global Positioning System</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hurricanes</subject><subject>Meteorological satellites</subject><subject>Microwave radiometers</subject><subject>microwave reflectometry</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>Numerical prediction</subject><subject>Numerical weather forecasting</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>radar measurements</subject><subject>Radiometers</subject><subject>Rain</subject><subject>remote sensing</subject><subject>Retrieval</subject><subject>Satellite navigation systems</subject><subject>scattering</subject><subject>Scatterometers</subject><subject>Sea surface</subject><subject>Soil moisture</subject><subject>Space vehicles</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind forecasting</subject><subject>Wind measurement</subject><subject>Wind speed</subject><subject>Winds</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOD9-gHgT8LozJ03T5LIMnYJsshV2GdLk1HVu60w6Yf_ejg2vDhye9z2Hh5AHYEMApp_L8Ww-5IzDMGUqF1xekAFkmUqYFOKSDBhomXCl-TW5iXHFGIgM8gGZlEukk2lR0DJY950smoh00Ww9nWEXGvy1a1qsv9rQdMsNtf3-M7R-7zpaxIgxbnDb0boNdHQYT-bzO3JV23XE-_O8JeXrSzl6Sz6m4_dR8ZG4NJVdYm3_m4A6z1wllEdAiTWvnM9cztG5FLWXVeVT7-sqk2h5rbVVlQcvQPP0ljydaneh_dlj7Myq3Ydtf9FwCTpTOpd5T8GJcqGNMWBtdqHZ2HAwwMzRmjlaM0dr5mytzzyeMg0i_vNaKFBapH9IuWjb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Said, Faozi</creator><creator>Jelenak, Zorana</creator><creator>Park, Jeonghwan</creator><creator>Chang, Paul S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6231-8522</orcidid><orcidid>https://orcid.org/0000-0002-4641-188X</orcidid><orcidid>https://orcid.org/0000-0001-5113-0938</orcidid></search><sort><creationdate>2022</creationdate><title>The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS</title><author>Said, Faozi ; Jelenak, Zorana ; Park, Jeonghwan ; Chang, Paul S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-aa15541f75cb48de1e6ef2bcd5c72ecc3e9d6bbd3ddfb56ea2f99a8bd1d41923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric precipitations</topic><topic>Bias</topic><topic>Calibration</topic><topic>Cyclones</topic><topic>Geophysical measurements</topic><topic>Global navigation satellite system</topic><topic>Global Positioning System</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hurricanes</topic><topic>Meteorological satellites</topic><topic>Microwave radiometers</topic><topic>microwave reflectometry</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>Numerical prediction</topic><topic>Numerical weather forecasting</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>radar measurements</topic><topic>Radiometers</topic><topic>Rain</topic><topic>remote sensing</topic><topic>Retrieval</topic><topic>Satellite navigation systems</topic><topic>scattering</topic><topic>Scatterometers</topic><topic>Sea surface</topic><topic>Soil moisture</topic><topic>Space vehicles</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind forecasting</topic><topic>Wind measurement</topic><topic>Wind speed</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Said, Faozi</creatorcontrib><creatorcontrib>Jelenak, Zorana</creatorcontrib><creatorcontrib>Park, Jeonghwan</creatorcontrib><creatorcontrib>Chang, Paul S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Said, Faozi</au><au>Jelenak, Zorana</au><au>Park, Jeonghwan</au><au>Chang, Paul S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>24</epage><pages>1-24</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[A novel approach in addressing cyclone global navigation satellite system (CyGNSS) intersatellite and GPS-related calibration issues is proposed, based on a track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction method. This method makes use of both ancillary data from numerical weather prediction models and a semiempirical geophysical model function. Care is taken, so the track-wise <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> bias correction maintains CyGNSS signal sensitivity. Both intersatellite and GPS-related calibration issues are removed after correction. Long-term <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> downward trend, observed throughout the CyGNSS mission, is greatly reduced. Using the corrected <inline-formula> <tex-math notation="LaTeX">\sigma ^{o} </tex-math></inline-formula> measurements, a wind retrieval method is also presented and its product thoroughly assessed for a three-year period against European Centre for Medium-Range Weather Forecasts (ECMWFs), Advanced Scatterometer (ASCAT) A/B, Advanced Microwave Scanning Radiometer (AMSR)-2, GMI, WindSat, hurricane weather research and forecasting (HWRF) model, and the stepped frequency microwave radiometer (SFMR) winds. The overall wind speed bias and standard deviation of the error (stde) against ECMWF are 0.16 and 1.19 m/s, while these are −0.11 and 1.12 m/s against ASCAT A/B, respectively. The same metrics against AMSR-2/GMI/WindSat (combined) are −0.19 and 1.11 m/s, respectively. The bias and stde against soil moisture active passive (SMAP) are −0.38 and 1.90 m/s, respectively. In the tropical cyclone environment, the bias and stde against HWRF are −0.54 and 2.90 m/s, and −4.71 and 5.88 m/s with SFMR. Finally, CyGNSS wind performance is gauged in the presence of rain. Below 10 m/s, the bias between CyGNSS and ECMWF increases as the rain rate increases. Between 10 and 15 m/s, biases are mostly absent. Above 15 m/s, results are inconclusive due to the low number of collocated rain samples. Overall, the presented CyGNSS wind speed product both exhibits consistency and reliability, showing promise of using GNSS-R derived winds for operational purposes.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3087426</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-6231-8522</orcidid><orcidid>https://orcid.org/0000-0002-4641-188X</orcidid><orcidid>https://orcid.org/0000-0001-5113-0938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-24
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2619589767
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric precipitations
Bias
Calibration
Cyclones
Geophysical measurements
Global navigation satellite system
Global Positioning System
Global positioning systems
GPS
Hurricanes
Meteorological satellites
Microwave radiometers
microwave reflectometry
Navigation
Navigational satellites
Numerical prediction
Numerical weather forecasting
Prediction models
Predictive models
radar measurements
Radiometers
Rain
remote sensing
Retrieval
Satellite navigation systems
scattering
Scatterometers
Sea surface
Soil moisture
Space vehicles
Tropical climate
Tropical cyclones
Weather
Weather forecasting
Wind
Wind forecasting
Wind measurement
Wind speed
Winds
title The NOAA Track-Wise Wind Retrieval Algorithm and Product Assessment for CyGNSS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NOAA%20Track-Wise%20Wind%20Retrieval%20Algorithm%20and%20Product%20Assessment%20for%20CyGNSS&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Said,%20Faozi&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=24&rft.pages=1-24&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3087426&rft_dat=%3Cproquest_cross%3E2619589767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619589767&rft_id=info:pmid/&rft_ieee_id=9481894&rfr_iscdi=true