Spectral maps associated to semialgebraic branched coverings

In this article we prove that a semialgebraic map π : M → N is a branched covering if and only if its associated spectral map is a branched covering. In addition, such spectral map has a neat behavior with respect to the branching locus, the ramification set and the ramification index. A crucial fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista matemática complutense 2022, Vol.35 (1), p.227-264
Hauptverfasser: Baro, E., Fernando, Jose F., Gamboa, J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 1
container_start_page 227
container_title Revista matemática complutense
container_volume 35
creator Baro, E.
Fernando, Jose F.
Gamboa, J. M.
description In this article we prove that a semialgebraic map π : M → N is a branched covering if and only if its associated spectral map is a branched covering. In addition, such spectral map has a neat behavior with respect to the branching locus, the ramification set and the ramification index. A crucial fact to prove the preceding result is the characterization of the prime ideals whose fibers under the previous spectral map are singletons.
doi_str_mv 10.1007/s13163-020-00377-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619558341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619558341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5db656ffc2591fb3514ff990b17216826d2ad7b63b4fbf68589fe8d0724e18023</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz9GZZPMFXqT4BQUP6jlks0nd0nbXZCv4701dwZuXmYF533eYh5ALhCsEUNcZOUpOgQEF4EpRcUBmaLSmTIM6LDNyQ0vRx-Qk5xWAMLWuZ-TmZQh-TG5dbdyQK5dz7zs3hrYa-yqHTefWy9Ak1_mq1K1_Lxvff4bUbZf5jBxFt87h_Lefkrf7u9f5I108PzzNbxfUMwUjFW0jhYzRM2EwNlxgHaMx0KBiKDWTLXOtaiRv6thEqYU2MegWFKsDamD8lFxOuUPqP3Yhj3bV79K2nLRMohFC8xqLik0qn_qcU4h2SN3GpS-LYPeU7ETJFkr2h5IVxcQnUx72L4X0F_2P6xsR4GmN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619558341</pqid></control><display><type>article</type><title>Spectral maps associated to semialgebraic branched coverings</title><source>Universidad Complutense de Madrid Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Baro, E. ; Fernando, Jose F. ; Gamboa, J. M.</creator><creatorcontrib>Baro, E. ; Fernando, Jose F. ; Gamboa, J. M.</creatorcontrib><description>In this article we prove that a semialgebraic map π : M → N is a branched covering if and only if its associated spectral map is a branched covering. In addition, such spectral map has a neat behavior with respect to the branching locus, the ramification set and the ramification index. A crucial fact to prove the preceding result is the characterization of the prime ideals whose fibers under the previous spectral map are singletons.</description><identifier>ISSN: 1139-1138</identifier><identifier>EISSN: 1988-2807</identifier><identifier>DOI: 10.1007/s13163-020-00377-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Spectra ; Topology</subject><ispartof>Revista matemática complutense, 2022, Vol.35 (1), p.227-264</ispartof><rights>Universidad Complutense de Madrid 2021</rights><rights>Universidad Complutense de Madrid 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5db656ffc2591fb3514ff990b17216826d2ad7b63b4fbf68589fe8d0724e18023</cites><orcidid>0000-0002-4223-2323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13163-020-00377-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13163-020-00377-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baro, E.</creatorcontrib><creatorcontrib>Fernando, Jose F.</creatorcontrib><creatorcontrib>Gamboa, J. M.</creatorcontrib><title>Spectral maps associated to semialgebraic branched coverings</title><title>Revista matemática complutense</title><addtitle>Rev Mat Complut</addtitle><description>In this article we prove that a semialgebraic map π : M → N is a branched covering if and only if its associated spectral map is a branched covering. In addition, such spectral map has a neat behavior with respect to the branching locus, the ramification set and the ramification index. A crucial fact to prove the preceding result is the characterization of the prime ideals whose fibers under the previous spectral map are singletons.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spectra</subject><subject>Topology</subject><issn>1139-1138</issn><issn>1988-2807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz9GZZPMFXqT4BQUP6jlks0nd0nbXZCv4701dwZuXmYF533eYh5ALhCsEUNcZOUpOgQEF4EpRcUBmaLSmTIM6LDNyQ0vRx-Qk5xWAMLWuZ-TmZQh-TG5dbdyQK5dz7zs3hrYa-yqHTefWy9Ak1_mq1K1_Lxvff4bUbZf5jBxFt87h_Lefkrf7u9f5I108PzzNbxfUMwUjFW0jhYzRM2EwNlxgHaMx0KBiKDWTLXOtaiRv6thEqYU2MegWFKsDamD8lFxOuUPqP3Yhj3bV79K2nLRMohFC8xqLik0qn_qcU4h2SN3GpS-LYPeU7ETJFkr2h5IVxcQnUx72L4X0F_2P6xsR4GmN</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Baro, E.</creator><creator>Fernando, Jose F.</creator><creator>Gamboa, J. M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4223-2323</orcidid></search><sort><creationdate>2022</creationdate><title>Spectral maps associated to semialgebraic branched coverings</title><author>Baro, E. ; Fernando, Jose F. ; Gamboa, J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5db656ffc2591fb3514ff990b17216826d2ad7b63b4fbf68589fe8d0724e18023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spectra</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baro, E.</creatorcontrib><creatorcontrib>Fernando, Jose F.</creatorcontrib><creatorcontrib>Gamboa, J. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Revista matemática complutense</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baro, E.</au><au>Fernando, Jose F.</au><au>Gamboa, J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral maps associated to semialgebraic branched coverings</atitle><jtitle>Revista matemática complutense</jtitle><stitle>Rev Mat Complut</stitle><date>2022</date><risdate>2022</risdate><volume>35</volume><issue>1</issue><spage>227</spage><epage>264</epage><pages>227-264</pages><issn>1139-1138</issn><eissn>1988-2807</eissn><abstract>In this article we prove that a semialgebraic map π : M → N is a branched covering if and only if its associated spectral map is a branched covering. In addition, such spectral map has a neat behavior with respect to the branching locus, the ramification set and the ramification index. A crucial fact to prove the preceding result is the characterization of the prime ideals whose fibers under the previous spectral map are singletons.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13163-020-00377-5</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0002-4223-2323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1139-1138
ispartof Revista matemática complutense, 2022, Vol.35 (1), p.227-264
issn 1139-1138
1988-2807
language eng
recordid cdi_proquest_journals_2619558341
source Universidad Complutense de Madrid Free Journals; SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Spectra
Topology
title Spectral maps associated to semialgebraic branched coverings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20maps%20associated%20to%20semialgebraic%20branched%20coverings&rft.jtitle=Revista%20matem%C3%A1tica%20complutense&rft.au=Baro,%20E.&rft.date=2022&rft.volume=35&rft.issue=1&rft.spage=227&rft.epage=264&rft.pages=227-264&rft.issn=1139-1138&rft.eissn=1988-2807&rft_id=info:doi/10.1007/s13163-020-00377-5&rft_dat=%3Cproquest_cross%3E2619558341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619558341&rft_id=info:pmid/&rfr_iscdi=true