Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review

The research on the Very High Cycle Fatigue (VHCF) response of materials is fundamental to guarantee a safe design of structural components. Researchers develop models for the fatigue life in VHCF, aiming at assessing the stress–life relation and, accordingly, the probabilistic S–N (P‐S–N) curves. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2022-02, Vol.45 (2), p.332-370
Hauptverfasser: Tridello, Andrea, Boursier Niutta, Carlo, Rossetto, Massimo, Berto, Filippo, Paolino, Davide S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 2
container_start_page 332
container_title Fatigue & fracture of engineering materials & structures
container_volume 45
creator Tridello, Andrea
Boursier Niutta, Carlo
Rossetto, Massimo
Berto, Filippo
Paolino, Davide S.
description The research on the Very High Cycle Fatigue (VHCF) response of materials is fundamental to guarantee a safe design of structural components. Researchers develop models for the fatigue life in VHCF, aiming at assessing the stress–life relation and, accordingly, the probabilistic S–N (P‐S–N) curves. In the paper, the models for the stress–life relation in VHCF are comprehensively reviewed. The models are classified according to the approach followed for defining the stress–life dependency, that is, power law, probabilistic, fracture mechanics, or Paris law‐based approach. The number of failure modes that can be modeled, the statistical distribution for the fatigue life, and the characteristics of the estimated P‐S–N curves are also reviewed by analyzing the fitting capability of experimental datasets for each model. This review is supposed to highlight the strengths and weaknesses of the currently available models and guide the future research.
doi_str_mv 10.1111/ffe.13610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619325012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619325012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-179ef164a7f9b1706289028366f9f7fe5ec90c802109eea9194a6eb036b2c2fc3</originalsourceid><addsrcrecordid>eNp1kUtOwzAQhi0EEuWx4AYjsUIi1I_GidmhqqVICJB4iF2UmnExShOwU1B3HAGJI3AzTsLQsMUbW___eX7NDGN7gh8JOn3n8EgoLfga64mB5onUJl1nvTxLdZKl-f0m24rxiXOhB0r12Nd1W7Y-tt6WFcybB6wiuCYAkjQnp55B-4jg6DlbIFTe4eFKiW3AGL_fP38lCFgR0dSHUNYPK__q-_3jmuwLsIvwihEaB3Nsy6ryFqgyBl9Slq_hDsMSJn72CMOlrRDGXdYxnFDZV49vO2zDEYu7f_c2ux2PboaT5Pzy9Gx4cp5YpSRPRGbQUVtl5sxUZFzL3HCZK62dcZnDFK3hNudScINYGmEGpcYpV3oqrXRWbbP9ru5zaF4WNIHiqVmEmiILqYVRMuVCEnXQUTY0MQZ0xXOgUYVlIXjxu4OCdlCsdkBsv2PffIXL_8FiPB51P34A85uMBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619325012</pqid></control><display><type>article</type><title>Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review</title><source>Wiley Online Library All Journals</source><creator>Tridello, Andrea ; Boursier Niutta, Carlo ; Rossetto, Massimo ; Berto, Filippo ; Paolino, Davide S.</creator><creatorcontrib>Tridello, Andrea ; Boursier Niutta, Carlo ; Rossetto, Massimo ; Berto, Filippo ; Paolino, Davide S.</creatorcontrib><description>The research on the Very High Cycle Fatigue (VHCF) response of materials is fundamental to guarantee a safe design of structural components. Researchers develop models for the fatigue life in VHCF, aiming at assessing the stress–life relation and, accordingly, the probabilistic S–N (P‐S–N) curves. In the paper, the models for the stress–life relation in VHCF are comprehensively reviewed. The models are classified according to the approach followed for defining the stress–life dependency, that is, power law, probabilistic, fracture mechanics, or Paris law‐based approach. The number of failure modes that can be modeled, the statistical distribution for the fatigue life, and the characteristics of the estimated P‐S–N curves are also reviewed by analyzing the fitting capability of experimental datasets for each model. This review is supposed to highlight the strengths and weaknesses of the currently available models and guide the future research.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13610</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>duplex S–N curves ; Failure modes ; Fatigue life assessment ; fatigue limit ; FGA ; Fracture mechanics ; High cycle fatigue ; Statistical analysis ; statistical model ; Statistical models ; step‐wise curves ; ultrasonic fatigue tests ; very high cycle fatigue (VHCF)</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2022-02, Vol.45 (2), p.332-370</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-179ef164a7f9b1706289028366f9f7fe5ec90c802109eea9194a6eb036b2c2fc3</citedby><cites>FETCH-LOGICAL-c3320-179ef164a7f9b1706289028366f9f7fe5ec90c802109eea9194a6eb036b2c2fc3</cites><orcidid>0000-0001-9676-9970 ; 0000-0002-7894-4752 ; 0000-0002-4231-4580 ; 0000-0003-3007-3377 ; 0000-0003-3066-9680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13610$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13610$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Tridello, Andrea</creatorcontrib><creatorcontrib>Boursier Niutta, Carlo</creatorcontrib><creatorcontrib>Rossetto, Massimo</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Paolino, Davide S.</creatorcontrib><title>Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>The research on the Very High Cycle Fatigue (VHCF) response of materials is fundamental to guarantee a safe design of structural components. Researchers develop models for the fatigue life in VHCF, aiming at assessing the stress–life relation and, accordingly, the probabilistic S–N (P‐S–N) curves. In the paper, the models for the stress–life relation in VHCF are comprehensively reviewed. The models are classified according to the approach followed for defining the stress–life dependency, that is, power law, probabilistic, fracture mechanics, or Paris law‐based approach. The number of failure modes that can be modeled, the statistical distribution for the fatigue life, and the characteristics of the estimated P‐S–N curves are also reviewed by analyzing the fitting capability of experimental datasets for each model. This review is supposed to highlight the strengths and weaknesses of the currently available models and guide the future research.</description><subject>duplex S–N curves</subject><subject>Failure modes</subject><subject>Fatigue life assessment</subject><subject>fatigue limit</subject><subject>FGA</subject><subject>Fracture mechanics</subject><subject>High cycle fatigue</subject><subject>Statistical analysis</subject><subject>statistical model</subject><subject>Statistical models</subject><subject>step‐wise curves</subject><subject>ultrasonic fatigue tests</subject><subject>very high cycle fatigue (VHCF)</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kUtOwzAQhi0EEuWx4AYjsUIi1I_GidmhqqVICJB4iF2UmnExShOwU1B3HAGJI3AzTsLQsMUbW___eX7NDGN7gh8JOn3n8EgoLfga64mB5onUJl1nvTxLdZKl-f0m24rxiXOhB0r12Nd1W7Y-tt6WFcybB6wiuCYAkjQnp55B-4jg6DlbIFTe4eFKiW3AGL_fP38lCFgR0dSHUNYPK__q-_3jmuwLsIvwihEaB3Nsy6ryFqgyBl9Slq_hDsMSJn72CMOlrRDGXdYxnFDZV49vO2zDEYu7f_c2ux2PboaT5Pzy9Gx4cp5YpSRPRGbQUVtl5sxUZFzL3HCZK62dcZnDFK3hNudScINYGmEGpcYpV3oqrXRWbbP9ru5zaF4WNIHiqVmEmiILqYVRMuVCEnXQUTY0MQZ0xXOgUYVlIXjxu4OCdlCsdkBsv2PffIXL_8FiPB51P34A85uMBg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Tridello, Andrea</creator><creator>Boursier Niutta, Carlo</creator><creator>Rossetto, Massimo</creator><creator>Berto, Filippo</creator><creator>Paolino, Davide S.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9676-9970</orcidid><orcidid>https://orcid.org/0000-0002-7894-4752</orcidid><orcidid>https://orcid.org/0000-0002-4231-4580</orcidid><orcidid>https://orcid.org/0000-0003-3007-3377</orcidid><orcidid>https://orcid.org/0000-0003-3066-9680</orcidid></search><sort><creationdate>202202</creationdate><title>Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review</title><author>Tridello, Andrea ; Boursier Niutta, Carlo ; Rossetto, Massimo ; Berto, Filippo ; Paolino, Davide S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-179ef164a7f9b1706289028366f9f7fe5ec90c802109eea9194a6eb036b2c2fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>duplex S–N curves</topic><topic>Failure modes</topic><topic>Fatigue life assessment</topic><topic>fatigue limit</topic><topic>FGA</topic><topic>Fracture mechanics</topic><topic>High cycle fatigue</topic><topic>Statistical analysis</topic><topic>statistical model</topic><topic>Statistical models</topic><topic>step‐wise curves</topic><topic>ultrasonic fatigue tests</topic><topic>very high cycle fatigue (VHCF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tridello, Andrea</creatorcontrib><creatorcontrib>Boursier Niutta, Carlo</creatorcontrib><creatorcontrib>Rossetto, Massimo</creatorcontrib><creatorcontrib>Berto, Filippo</creatorcontrib><creatorcontrib>Paolino, Davide S.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tridello, Andrea</au><au>Boursier Niutta, Carlo</au><au>Rossetto, Massimo</au><au>Berto, Filippo</au><au>Paolino, Davide S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2022-02</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>332</spage><epage>370</epage><pages>332-370</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>The research on the Very High Cycle Fatigue (VHCF) response of materials is fundamental to guarantee a safe design of structural components. Researchers develop models for the fatigue life in VHCF, aiming at assessing the stress–life relation and, accordingly, the probabilistic S–N (P‐S–N) curves. In the paper, the models for the stress–life relation in VHCF are comprehensively reviewed. The models are classified according to the approach followed for defining the stress–life dependency, that is, power law, probabilistic, fracture mechanics, or Paris law‐based approach. The number of failure modes that can be modeled, the statistical distribution for the fatigue life, and the characteristics of the estimated P‐S–N curves are also reviewed by analyzing the fitting capability of experimental datasets for each model. This review is supposed to highlight the strengths and weaknesses of the currently available models and guide the future research.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13610</doi><tpages>39</tpages><orcidid>https://orcid.org/0000-0001-9676-9970</orcidid><orcidid>https://orcid.org/0000-0002-7894-4752</orcidid><orcidid>https://orcid.org/0000-0002-4231-4580</orcidid><orcidid>https://orcid.org/0000-0003-3007-3377</orcidid><orcidid>https://orcid.org/0000-0003-3066-9680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2022-02, Vol.45 (2), p.332-370
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2619325012
source Wiley Online Library All Journals
subjects duplex S–N curves
Failure modes
Fatigue life assessment
fatigue limit
FGA
Fracture mechanics
High cycle fatigue
Statistical analysis
statistical model
Statistical models
step‐wise curves
ultrasonic fatigue tests
very high cycle fatigue (VHCF)
title Statistical models for estimating the fatigue life, the stress–life relation, and the P‐S–N curves of metallic materials in Very High Cycle Fatigue: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20models%20for%20estimating%20the%20fatigue%20life,%20the%20stress%E2%80%93life%20relation,%20and%20the%20P%E2%80%90S%E2%80%93N%20curves%20of%20metallic%20materials%20in%20Very%20High%20Cycle%20Fatigue:%20A%20review&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Tridello,%20Andrea&rft.date=2022-02&rft.volume=45&rft.issue=2&rft.spage=332&rft.epage=370&rft.pages=332-370&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13610&rft_dat=%3Cproquest_cross%3E2619325012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619325012&rft_id=info:pmid/&rfr_iscdi=true