Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle

This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2022-01, Vol.43 (1), p.106-122
Hauptverfasser: Xia, Huafeng, Xu, Sheng, Zhou, Cheng, Chen, Feiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 106
container_title Optimal control applications & methods
container_volume 43
creator Xia, Huafeng
Xu, Sheng
Zhou, Cheng
Chen, Feiyan
description This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition‐based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi‐innovation identification theory, a decomposition‐based maximum likelihood multi‐innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.
doi_str_mv 10.1002/oca.2766
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619318062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619318062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-4a59d45a35cd00952df7504de8859b8f0b88d918974dbb6bd37774b792c70a353</originalsourceid><addsrcrecordid>eNp1kMtOAyEUhonRxFpNfAQSN26mAnMBlk3jLanpRtcEBsZSh2GEGbU7H8Fn9Emk1q2rszjffy4fAOcYzTBC5MrXckZoVR2ACUacZ7jExSGYIFzkGUGMHoOTGDcIIYpzMgHDw9gO9vvzy3adf5OD9R18DlJb0w2wl0E6M5gATRys23cbH6Dbhd5ksFK1BsZtHIyLUMloNEzIsDbQyQ_rRgdb-2Jau_Zewz7YrrZ9a07BUSPbaM7-6hQ83Vw_Lu6y5er2fjFfZjXheZUVsuS6KGVe1hohXhLd0BIV2jBWcsUapBjTHDNOC61UpXROKS0U5aSmKKXyKbjYz-2Dfx3TD2Ljx9CllYJUmOeYoYok6nJP1cHHGEwj0qFOhq3ASOyciuRU7JwmNNuj77Y12385sVrMf_kfdO967Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619318062</pqid></control><display><type>article</type><title>Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xia, Huafeng ; Xu, Sheng ; Zhou, Cheng ; Chen, Feiyan</creator><creatorcontrib>Xia, Huafeng ; Xu, Sheng ; Zhou, Cheng ; Chen, Feiyan</creatorcontrib><description>This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition‐based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi‐innovation identification theory, a decomposition‐based maximum likelihood multi‐innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2766</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Decomposition ; decomposition technique ; Innovations ; maximum likelihood ; multivariable system ; multi‐innovation identification theory ; Parameter estimation ; Parameter identification ; Subsystems</subject><ispartof>Optimal control applications &amp; methods, 2022-01, Vol.43 (1), p.106-122</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-4a59d45a35cd00952df7504de8859b8f0b88d918974dbb6bd37774b792c70a353</citedby><cites>FETCH-LOGICAL-c2936-4a59d45a35cd00952df7504de8859b8f0b88d918974dbb6bd37774b792c70a353</cites><orcidid>0000-0003-2360-1856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2766$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2766$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Xia, Huafeng</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Chen, Feiyan</creatorcontrib><title>Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle</title><title>Optimal control applications &amp; methods</title><description>This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition‐based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi‐innovation identification theory, a decomposition‐based maximum likelihood multi‐innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Decomposition</subject><subject>decomposition technique</subject><subject>Innovations</subject><subject>maximum likelihood</subject><subject>multivariable system</subject><subject>multi‐innovation identification theory</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Subsystems</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOAyEUhonRxFpNfAQSN26mAnMBlk3jLanpRtcEBsZSh2GEGbU7H8Fn9Emk1q2rszjffy4fAOcYzTBC5MrXckZoVR2ACUacZ7jExSGYIFzkGUGMHoOTGDcIIYpzMgHDw9gO9vvzy3adf5OD9R18DlJb0w2wl0E6M5gATRys23cbH6Dbhd5ksFK1BsZtHIyLUMloNEzIsDbQyQ_rRgdb-2Jau_Zewz7YrrZ9a07BUSPbaM7-6hQ83Vw_Lu6y5er2fjFfZjXheZUVsuS6KGVe1hohXhLd0BIV2jBWcsUapBjTHDNOC61UpXROKS0U5aSmKKXyKbjYz-2Dfx3TD2Ljx9CllYJUmOeYoYok6nJP1cHHGEwj0qFOhq3ASOyciuRU7JwmNNuj77Y12385sVrMf_kfdO967Q</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Xia, Huafeng</creator><creator>Xu, Sheng</creator><creator>Zhou, Cheng</creator><creator>Chen, Feiyan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2360-1856</orcidid></search><sort><creationdate>202201</creationdate><title>Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle</title><author>Xia, Huafeng ; Xu, Sheng ; Zhou, Cheng ; Chen, Feiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-4a59d45a35cd00952df7504de8859b8f0b88d918974dbb6bd37774b792c70a353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Decomposition</topic><topic>decomposition technique</topic><topic>Innovations</topic><topic>maximum likelihood</topic><topic>multivariable system</topic><topic>multi‐innovation identification theory</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Huafeng</creatorcontrib><creatorcontrib>Xu, Sheng</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Chen, Feiyan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Huafeng</au><au>Xu, Sheng</au><au>Zhou, Cheng</au><au>Chen, Feiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2022-01</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>106</spage><epage>122</epage><pages>106-122</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>This article considers the parameter estimation problems of linear multivariable systems with unknown disturbances. For the parameter matrices in the multivariable systems, the model decomposition technique is used to reduce the computational complexity by decomposing the multivariable system into several subsystems with only the parameter vectors. By means of the negative gradient search, a decomposition‐based maximum likelihood recursive extended stochastic gradient algorithm is derived. In order to improve the parameter estimation accuracy, by introducing the multi‐innovation identification theory, a decomposition‐based maximum likelihood multi‐innovation extended stochastic gradient algorithm is proposed. The simulation results illustrate the effectiveness of the proposed algorithms.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2766</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2360-1856</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2022-01, Vol.43 (1), p.106-122
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2619318062
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Decomposition
decomposition technique
Innovations
maximum likelihood
multivariable system
multi‐innovation identification theory
Parameter estimation
Parameter identification
Subsystems
title Multi‐innovation gradient parameter estimation for multivariable systems based on the maximum likelihood principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90innovation%20gradient%20parameter%20estimation%20for%20multivariable%20systems%20based%20on%20the%20maximum%20likelihood%20principle&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Xia,%20Huafeng&rft.date=2022-01&rft.volume=43&rft.issue=1&rft.spage=106&rft.epage=122&rft.pages=106-122&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2766&rft_dat=%3Cproquest_cross%3E2619318062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619318062&rft_id=info:pmid/&rfr_iscdi=true