A sharp relative-error bound for the Helmholtz h-FEM at high frequency
For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explic...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2022, Vol.150 (1), p.137-178 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Numerische Mathematik |
container_volume | 150 |
creator | Lafontaine, D. Spence, E. A. Wunsch, J. |
description | For the
h
-finite-element method (
h
-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth
h
must decrease with the frequency
k
to maintain accuracy as
k
increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any
k
-explicit bounds on the
relative error
of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree,
p
, equal to one), the condition “
h
2
k
3
sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of
k
) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for
p
≥
2
. A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures. |
doi_str_mv | 10.1007/s00211-021-01253-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619236112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619236112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0Zkkm-4eS2mtUPGi4C3sx6Tbst2tyVaov77RFbx5efNmeG9meIzdItwjwOQhAEhEEUEAykQJOGMjyHQilNTJeeQgM5Fk2fsluwphC4ATo3HEFlMe6tzvuacm7zefJMj7zvOiO7QVd5H1NfElNbu6a_ovXovF_JnnPa8365o7Tx8HasvjNbtweRPo5reO2dti_jpbitXL49NsuhKlMqqPD7hK5gbJUIVGa2ekRCdJxqEujEGTUqqwKjKpIXZFMYE0JS2xqLQrnRqzu2Hv3nfxcujttjv4Np600mAmlUGUUSUHVem7EDw5u_ebXe6PFsF-52WHvGwE-5OXhWhSgylEcbsm_7f6H9cJiuFrrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619236112</pqid></control><display><type>article</type><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</creator><creatorcontrib>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</creatorcontrib><description>For the
h
-finite-element method (
h
-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth
h
must decrease with the frequency
k
to maintain accuracy as
k
increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any
k
-explicit bounds on the
relative error
of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree,
p
, equal to one), the condition “
h
2
k
3
sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of
k
) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for
p
≥
2
. A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01253-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Barriers ; Error analysis ; Finite element method ; Helmholtz equations ; Inhomogeneous media ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Plane waves ; Polynomials ; Simulation ; Theoretical ; Wave scattering</subject><ispartof>Numerische Mathematik, 2022, Vol.150 (1), p.137-178</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</citedby><cites>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01253-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01253-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lafontaine, D.</creatorcontrib><creatorcontrib>Spence, E. A.</creatorcontrib><creatorcontrib>Wunsch, J.</creatorcontrib><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>For the
h
-finite-element method (
h
-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth
h
must decrease with the frequency
k
to maintain accuracy as
k
increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any
k
-explicit bounds on the
relative error
of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree,
p
, equal to one), the condition “
h
2
k
3
sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of
k
) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for
p
≥
2
. A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</description><subject>Barriers</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Helmholtz equations</subject><subject>Inhomogeneous media</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Plane waves</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Wave scattering</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0Zkkm-4eS2mtUPGi4C3sx6Tbst2tyVaov77RFbx5efNmeG9meIzdItwjwOQhAEhEEUEAykQJOGMjyHQilNTJeeQgM5Fk2fsluwphC4ATo3HEFlMe6tzvuacm7zefJMj7zvOiO7QVd5H1NfElNbu6a_ovXovF_JnnPa8365o7Tx8HasvjNbtweRPo5reO2dti_jpbitXL49NsuhKlMqqPD7hK5gbJUIVGa2ekRCdJxqEujEGTUqqwKjKpIXZFMYE0JS2xqLQrnRqzu2Hv3nfxcujttjv4Np600mAmlUGUUSUHVem7EDw5u_ebXe6PFsF-52WHvGwE-5OXhWhSgylEcbsm_7f6H9cJiuFrrw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lafontaine, D.</creator><creator>Spence, E. A.</creator><creator>Wunsch, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><author>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barriers</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Helmholtz equations</topic><topic>Inhomogeneous media</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Plane waves</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lafontaine, D.</creatorcontrib><creatorcontrib>Spence, E. A.</creatorcontrib><creatorcontrib>Wunsch, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lafontaine, D.</au><au>Spence, E. A.</au><au>Wunsch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022</date><risdate>2022</risdate><volume>150</volume><issue>1</issue><spage>137</spage><epage>178</epage><pages>137-178</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>For the
h
-finite-element method (
h
-FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth
h
must decrease with the frequency
k
to maintain accuracy as
k
increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any
k
-explicit bounds on the
relative error
of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree,
p
, equal to one), the condition “
h
2
k
3
sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of
k
) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for
p
≥
2
. A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01253-0</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2022, Vol.150 (1), p.137-178 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2619236112 |
source | SpringerLink Journals - AutoHoldings |
subjects | Barriers Error analysis Finite element method Helmholtz equations Inhomogeneous media Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Plane waves Polynomials Simulation Theoretical Wave scattering |
title | A sharp relative-error bound for the Helmholtz h-FEM at high frequency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sharp%20relative-error%20bound%20for%20the%20Helmholtz%20h-FEM%20at%20high%20frequency&rft.jtitle=Numerische%20Mathematik&rft.au=Lafontaine,%20D.&rft.date=2022&rft.volume=150&rft.issue=1&rft.spage=137&rft.epage=178&rft.pages=137-178&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01253-0&rft_dat=%3Cproquest_cross%3E2619236112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619236112&rft_id=info:pmid/&rfr_iscdi=true |