A sharp relative-error bound for the Helmholtz h-FEM at high frequency

For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022, Vol.150 (1), p.137-178
Hauptverfasser: Lafontaine, D., Spence, E. A., Wunsch, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 137
container_title Numerische Mathematik
container_volume 150
creator Lafontaine, D.
Spence, E. A.
Wunsch, J.
description For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explicit bounds on the relative error of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, p , equal to one), the condition “ h 2 k 3 sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of k ) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for p ≥ 2 . A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.
doi_str_mv 10.1007/s00211-021-01253-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619236112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2619236112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwHP0Zkkm-4eS2mtUPGi4C3sx6Tbst2tyVaov77RFbx5efNmeG9meIzdItwjwOQhAEhEEUEAykQJOGMjyHQilNTJeeQgM5Fk2fsluwphC4ATo3HEFlMe6tzvuacm7zefJMj7zvOiO7QVd5H1NfElNbu6a_ovXovF_JnnPa8365o7Tx8HasvjNbtweRPo5reO2dti_jpbitXL49NsuhKlMqqPD7hK5gbJUIVGa2ekRCdJxqEujEGTUqqwKjKpIXZFMYE0JS2xqLQrnRqzu2Hv3nfxcujttjv4Np600mAmlUGUUSUHVem7EDw5u_ebXe6PFsF-52WHvGwE-5OXhWhSgylEcbsm_7f6H9cJiuFrrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619236112</pqid></control><display><type>article</type><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</creator><creatorcontrib>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</creatorcontrib><description>For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explicit bounds on the relative error of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, p , equal to one), the condition “ h 2 k 3 sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of k ) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for p ≥ 2 . A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-021-01253-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Barriers ; Error analysis ; Finite element method ; Helmholtz equations ; Inhomogeneous media ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Plane waves ; Polynomials ; Simulation ; Theoretical ; Wave scattering</subject><ispartof>Numerische Mathematik, 2022, Vol.150 (1), p.137-178</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</citedby><cites>FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-021-01253-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-021-01253-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lafontaine, D.</creatorcontrib><creatorcontrib>Spence, E. A.</creatorcontrib><creatorcontrib>Wunsch, J.</creatorcontrib><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explicit bounds on the relative error of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, p , equal to one), the condition “ h 2 k 3 sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of k ) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for p ≥ 2 . A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</description><subject>Barriers</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Helmholtz equations</subject><subject>Inhomogeneous media</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Plane waves</subject><subject>Polynomials</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Wave scattering</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwHP0Zkkm-4eS2mtUPGi4C3sx6Tbst2tyVaov77RFbx5efNmeG9meIzdItwjwOQhAEhEEUEAykQJOGMjyHQilNTJeeQgM5Fk2fsluwphC4ATo3HEFlMe6tzvuacm7zefJMj7zvOiO7QVd5H1NfElNbu6a_ovXovF_JnnPa8365o7Tx8HasvjNbtweRPo5reO2dti_jpbitXL49NsuhKlMqqPD7hK5gbJUIVGa2ekRCdJxqEujEGTUqqwKjKpIXZFMYE0JS2xqLQrnRqzu2Hv3nfxcujttjv4Np600mAmlUGUUSUHVem7EDw5u_ebXe6PFsF-52WHvGwE-5OXhWhSgylEcbsm_7f6H9cJiuFrrw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lafontaine, D.</creator><creator>Spence, E. A.</creator><creator>Wunsch, J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</title><author>Lafontaine, D. ; Spence, E. A. ; Wunsch, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-59fd2a61e6ed1644f6221f2e22a64b66168e831db9240616bb7088e421bd4fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Barriers</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Helmholtz equations</topic><topic>Inhomogeneous media</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Plane waves</topic><topic>Polynomials</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lafontaine, D.</creatorcontrib><creatorcontrib>Spence, E. A.</creatorcontrib><creatorcontrib>Wunsch, J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lafontaine, D.</au><au>Spence, E. A.</au><au>Wunsch, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sharp relative-error bound for the Helmholtz h-FEM at high frequency</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022</date><risdate>2022</risdate><volume>150</volume><issue>1</issue><spage>137</spage><epage>178</epage><pages>137-178</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>For the h -finite-element method ( h -FEM) applied to the Helmholtz equation, the question of how quickly the meshwidth h must decrease with the frequency k to maintain accuracy as k increases has been studied since the mid 80’s. Nevertheless, there still do not exist in the literature any k -explicit bounds on the relative error of the FEM solution (the measure of the FEM error most often used in practical applications), apart from in one dimension. The main result of this paper is the sharp result that, for the lowest fixed-order conforming FEM (with polynomial degree, p , equal to one), the condition “ h 2 k 3 sufficiently small" is sufficient for the relative error of the FEM solution in 2 or 3 dimensions to be controllably small (independent of k ) for scattering of a plane wave by a nontrapping obstacle and/or a nontrapping inhomogeneous medium. We also prove relative-error bounds on the FEM solution for arbitrary fixed-order methods applied to scattering by a nontrapping obstacle, but these bounds are not sharp for p ≥ 2 . A key ingredient in our proofs is a result describing the oscillatory behaviour of the solution of the plane-wave scattering problem, which we prove using semiclassical defect measures.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-021-01253-0</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2022, Vol.150 (1), p.137-178
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2619236112
source SpringerLink Journals - AutoHoldings
subjects Barriers
Error analysis
Finite element method
Helmholtz equations
Inhomogeneous media
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Plane waves
Polynomials
Simulation
Theoretical
Wave scattering
title A sharp relative-error bound for the Helmholtz h-FEM at high frequency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sharp%20relative-error%20bound%20for%20the%20Helmholtz%20h-FEM%20at%20high%20frequency&rft.jtitle=Numerische%20Mathematik&rft.au=Lafontaine,%20D.&rft.date=2022&rft.volume=150&rft.issue=1&rft.spage=137&rft.epage=178&rft.pages=137-178&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-021-01253-0&rft_dat=%3Cproquest_cross%3E2619236112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619236112&rft_id=info:pmid/&rfr_iscdi=true