On circulant nut graphs

A nut graph is a simple graph whose adjacency matrix has the eigenvalue 0 with multiplicity 1 such that its corresponding eigenvector has no zero entries. Motivated by a question of Fowler et al. (2020) [5] to determine the pairs (n,d) for which a vertex-transitive nut graph of order n and degree d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2022-01, Vol.633, p.127-151
Hauptverfasser: Damnjanović, Ivan, Stevanović, Dragan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue
container_start_page 127
container_title Linear algebra and its applications
container_volume 633
creator Damnjanović, Ivan
Stevanović, Dragan
description A nut graph is a simple graph whose adjacency matrix has the eigenvalue 0 with multiplicity 1 such that its corresponding eigenvector has no zero entries. Motivated by a question of Fowler et al. (2020) [5] to determine the pairs (n,d) for which a vertex-transitive nut graph of order n and degree d exists, Bašić et al. (2021) [1] initiated the study of circulant nut graphs. Here we first show that the generator set of a circulant nut graph necessarily contains equally many even and odd integers. Then we characterize circulant nut graphs with the generator set {x,x+1,x+2,…,x+2t−1} for x,t∈N, which generalizes the result of Bašić et al. for the generator set {1,2,3,…,2t}. We further study circulant nut graphs with the generator set {1,2,3,…,2t+1}∖{t}, which yields nut graphs of every even order n≥4t+4 whenever t is odd such that t≢101 and t≢1815. This fully resolves Conjecture 9 from Bašić et al. (2021) [1]. We also study the existence of 4t-regular circulant nut graphs for small values of t, which partially resolves Conjecture 10 of Bašić et al. (2021) [1].
doi_str_mv 10.1016/j.laa.2021.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619122967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521003712</els_id><sourcerecordid>2619122967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-e1cd81f1513ea759d5211f0ce8cb40d92057d2a9fb8826624a828f99052da2843</originalsourceid><addsrcrecordid>eNp9j0FLxDAQRoMouK6exduC59aZaZMmeJLFVWFhL3oO2STVltquSSv4701Zz56GGb43M4-xG4QcAcVdm3fG5ASEqc8BxAlboKyKDCUXp2wBQGVWVIqfs4sYWwAoK6AFu971K9sEO3WmH1f9NK7egzl8xEt2Vpsu-qu_umRvm8fX9XO23T29rB-2mS2Ij5lH6yTWyLHwpuLKcUKswXpp9yU4RcArR0bVeylJCCqNJFkrBZycIVkWS3Z73HsIw9fk46jbYQp9OqlJoEIiJaqUwmPKhiHG4Gt9CM2nCT8aQc_-utXJX8_-8yj5J-b-yPj0_nfjg4628b31rgnejtoNzT_0LwoTX5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619122967</pqid></control><display><type>article</type><title>On circulant nut graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Damnjanović, Ivan ; Stevanović, Dragan</creator><creatorcontrib>Damnjanović, Ivan ; Stevanović, Dragan</creatorcontrib><description>A nut graph is a simple graph whose adjacency matrix has the eigenvalue 0 with multiplicity 1 such that its corresponding eigenvector has no zero entries. Motivated by a question of Fowler et al. (2020) [5] to determine the pairs (n,d) for which a vertex-transitive nut graph of order n and degree d exists, Bašić et al. (2021) [1] initiated the study of circulant nut graphs. Here we first show that the generator set of a circulant nut graph necessarily contains equally many even and odd integers. Then we characterize circulant nut graphs with the generator set {x,x+1,x+2,…,x+2t−1} for x,t∈N, which generalizes the result of Bašić et al. for the generator set {1,2,3,…,2t}. We further study circulant nut graphs with the generator set {1,2,3,…,2t+1}∖{t}, which yields nut graphs of every even order n≥4t+4 whenever t is odd such that t≢101 and t≢1815. This fully resolves Conjecture 9 from Bašić et al. (2021) [1]. We also study the existence of 4t-regular circulant nut graphs for small values of t, which partially resolves Conjecture 10 of Bašić et al. (2021) [1].</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Circulant graphs ; Cyclotomic polynomials ; Eigenvalues ; Eigenvectors ; Graph eigenvalues ; Graphs ; Linear algebra</subject><ispartof>Linear algebra and its applications, 2022-01, Vol.633, p.127-151</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-e1cd81f1513ea759d5211f0ce8cb40d92057d2a9fb8826624a828f99052da2843</citedby><cites>FETCH-LOGICAL-c325t-e1cd81f1513ea759d5211f0ce8cb40d92057d2a9fb8826624a828f99052da2843</cites><orcidid>0000-0003-2908-305X ; 0000-0001-7329-1759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379521003712$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Damnjanović, Ivan</creatorcontrib><creatorcontrib>Stevanović, Dragan</creatorcontrib><title>On circulant nut graphs</title><title>Linear algebra and its applications</title><description>A nut graph is a simple graph whose adjacency matrix has the eigenvalue 0 with multiplicity 1 such that its corresponding eigenvector has no zero entries. Motivated by a question of Fowler et al. (2020) [5] to determine the pairs (n,d) for which a vertex-transitive nut graph of order n and degree d exists, Bašić et al. (2021) [1] initiated the study of circulant nut graphs. Here we first show that the generator set of a circulant nut graph necessarily contains equally many even and odd integers. Then we characterize circulant nut graphs with the generator set {x,x+1,x+2,…,x+2t−1} for x,t∈N, which generalizes the result of Bašić et al. for the generator set {1,2,3,…,2t}. We further study circulant nut graphs with the generator set {1,2,3,…,2t+1}∖{t}, which yields nut graphs of every even order n≥4t+4 whenever t is odd such that t≢101 and t≢1815. This fully resolves Conjecture 9 from Bašić et al. (2021) [1]. We also study the existence of 4t-regular circulant nut graphs for small values of t, which partially resolves Conjecture 10 of Bašić et al. (2021) [1].</description><subject>Circulant graphs</subject><subject>Cyclotomic polynomials</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Graph eigenvalues</subject><subject>Graphs</subject><subject>Linear algebra</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLxDAQRoMouK6exduC59aZaZMmeJLFVWFhL3oO2STVltquSSv4701Zz56GGb43M4-xG4QcAcVdm3fG5ASEqc8BxAlboKyKDCUXp2wBQGVWVIqfs4sYWwAoK6AFu971K9sEO3WmH1f9NK7egzl8xEt2Vpsu-qu_umRvm8fX9XO23T29rB-2mS2Ij5lH6yTWyLHwpuLKcUKswXpp9yU4RcArR0bVeylJCCqNJFkrBZycIVkWS3Z73HsIw9fk46jbYQp9OqlJoEIiJaqUwmPKhiHG4Gt9CM2nCT8aQc_-utXJX8_-8yj5J-b-yPj0_nfjg4628b31rgnejtoNzT_0LwoTX5A</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Damnjanović, Ivan</creator><creator>Stevanović, Dragan</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2908-305X</orcidid><orcidid>https://orcid.org/0000-0001-7329-1759</orcidid></search><sort><creationdate>20220115</creationdate><title>On circulant nut graphs</title><author>Damnjanović, Ivan ; Stevanović, Dragan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-e1cd81f1513ea759d5211f0ce8cb40d92057d2a9fb8826624a828f99052da2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circulant graphs</topic><topic>Cyclotomic polynomials</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Graph eigenvalues</topic><topic>Graphs</topic><topic>Linear algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Damnjanović, Ivan</creatorcontrib><creatorcontrib>Stevanović, Dragan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Damnjanović, Ivan</au><au>Stevanović, Dragan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On circulant nut graphs</atitle><jtitle>Linear algebra and its applications</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>633</volume><spage>127</spage><epage>151</epage><pages>127-151</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>A nut graph is a simple graph whose adjacency matrix has the eigenvalue 0 with multiplicity 1 such that its corresponding eigenvector has no zero entries. Motivated by a question of Fowler et al. (2020) [5] to determine the pairs (n,d) for which a vertex-transitive nut graph of order n and degree d exists, Bašić et al. (2021) [1] initiated the study of circulant nut graphs. Here we first show that the generator set of a circulant nut graph necessarily contains equally many even and odd integers. Then we characterize circulant nut graphs with the generator set {x,x+1,x+2,…,x+2t−1} for x,t∈N, which generalizes the result of Bašić et al. for the generator set {1,2,3,…,2t}. We further study circulant nut graphs with the generator set {1,2,3,…,2t+1}∖{t}, which yields nut graphs of every even order n≥4t+4 whenever t is odd such that t≢101 and t≢1815. This fully resolves Conjecture 9 from Bašić et al. (2021) [1]. We also study the existence of 4t-regular circulant nut graphs for small values of t, which partially resolves Conjecture 10 of Bašić et al. (2021) [1].</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.10.006</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-2908-305X</orcidid><orcidid>https://orcid.org/0000-0001-7329-1759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2022-01, Vol.633, p.127-151
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2619122967
source Elsevier ScienceDirect Journals
subjects Circulant graphs
Cyclotomic polynomials
Eigenvalues
Eigenvectors
Graph eigenvalues
Graphs
Linear algebra
title On circulant nut graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20circulant%20nut%20graphs&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Damnjanovi%C4%87,%20Ivan&rft.date=2022-01-15&rft.volume=633&rft.spage=127&rft.epage=151&rft.pages=127-151&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.10.006&rft_dat=%3Cproquest_cross%3E2619122967%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619122967&rft_id=info:pmid/&rft_els_id=S0024379521003712&rfr_iscdi=true