A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials
In this paper, a novel and comprehensive multiscale finite element analysis is proposed to study the effect of hygrothermal aging on the behavior of fiber-reinforced composite materials. The temperature dependence of the material diffusivity and its spatial variation are considered. Fick's equa...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2022-01, Vol.217, p.109120, Article 109120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109120 |
container_title | Composites science and technology |
container_volume | 217 |
creator | Gholami, Meghdad Afrasiab, Hamed Baghestani, Ali Mohammad Fathi, Alireza |
description | In this paper, a novel and comprehensive multiscale finite element analysis is proposed to study the effect of hygrothermal aging on the behavior of fiber-reinforced composite materials. The temperature dependence of the material diffusivity and its spatial variation are considered. Fick's equation is numerically solved by the finite-difference approach and problems in which the temperature and/or humidity are different at the material boundaries are studied. In addition to the elastic properties degradation, the change of the coefficients of thermal and moisture expansion and the effect of the glass transition temperature in the hygrothermal aging process are considered. The algorithm has been used to study the time-dependent (transient) behavior of two sample laminated composites with different types of temperature and humidity boundary conditions. The maximum decline of about 87% and 74% has been observed in the transverse Young's modulus and shear modulus of the composite in the thickness direction. Furthermore, the coefficients of the thermal and moisture transverse expansion have been found to change from initial values of 0.12 and 7.31μmm°C to 0.45 and 7.96μmm°C in some hygrothermal conditions. The developed algorithm is applicable to a wide variety of composite materials and structures.
[Display omitted] |
doi_str_mv | 10.1016/j.compscitech.2021.109120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619122784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353821004760</els_id><sourcerecordid>2619122784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-5cbd09369d84259e9a85f42877f604e7b5175dbeea77f76857adff4cf522ea663</originalsourceid><addsrcrecordid>eNqNkE1PAyEQhonRxPrxHzCetwK7wHJsGr8SEy96JpQdWprdpQJt0vjnpa0Hj55m5s0778CD0B0lU0qoeFhPbRg2yfoMdjVlhNGiK8rIGZrQVqqKEk7O0YQwIaqa1-0lukppTQiRXLEJ-p7hMeygx8O2zz5Z0wPemGj6vmjOjyUXQw8DjBkPkFehwy5EnFeAU952exzccVjtlzGUJg6mx2bpxyUG58BmHMaj4fDMkA5xg8kQvenTDbpwpcDtb71Gn0-PH_OX6u39-XU-e6ts3ahccbvoiKqF6tqGcQXKtNw1rJXSCdKAXHAqebcAMEWRouXSdM411nHGwAhRX6P7U-4mhq8tpKzXYRvHclIzQQssJtumuNTJZWNIKYLTm-gHE_eaEn1grdf6D2t9YK1PrMvu_LQL5Rs7D1EXF4wWOh8LA90F_4-UHyHJkBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619122784</pqid></control><display><type>article</type><title>A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gholami, Meghdad ; Afrasiab, Hamed ; Baghestani, Ali Mohammad ; Fathi, Alireza</creator><creatorcontrib>Gholami, Meghdad ; Afrasiab, Hamed ; Baghestani, Ali Mohammad ; Fathi, Alireza</creatorcontrib><description>In this paper, a novel and comprehensive multiscale finite element analysis is proposed to study the effect of hygrothermal aging on the behavior of fiber-reinforced composite materials. The temperature dependence of the material diffusivity and its spatial variation are considered. Fick's equation is numerically solved by the finite-difference approach and problems in which the temperature and/or humidity are different at the material boundaries are studied. In addition to the elastic properties degradation, the change of the coefficients of thermal and moisture expansion and the effect of the glass transition temperature in the hygrothermal aging process are considered. The algorithm has been used to study the time-dependent (transient) behavior of two sample laminated composites with different types of temperature and humidity boundary conditions. The maximum decline of about 87% and 74% has been observed in the transverse Young's modulus and shear modulus of the composite in the thickness direction. Furthermore, the coefficients of the thermal and moisture transverse expansion have been found to change from initial values of 0.12 and 7.31μmm°C to 0.45 and 7.96μmm°C in some hygrothermal conditions. The developed algorithm is applicable to a wide variety of composite materials and structures.
[Display omitted]</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2021.109120</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>ABAQUS parallel Finite element analysis ; Algorithms ; Boundary conditions ; Composite materials ; Degradation of elastic-hygrothermal properties ; Elastic properties ; Fiber composites ; Finite difference method ; Finite element analysis ; Finite element method ; Glass transition temperature ; Heat transfer ; Humidity ; Hygrothermal aging ; Laminar composites ; Laminated composite material ; Mechanical properties ; Modulus of elasticity ; Moisture ; Multiscale analysis ; Shear modulus ; Temperature ; Temperature dependence ; Thermal expansion</subject><ispartof>Composites science and technology, 2022-01, Vol.217, p.109120, Article 109120</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 5, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-5cbd09369d84259e9a85f42877f604e7b5175dbeea77f76857adff4cf522ea663</citedby><cites>FETCH-LOGICAL-c349t-5cbd09369d84259e9a85f42877f604e7b5175dbeea77f76857adff4cf522ea663</cites><orcidid>0000-0002-2909-144X ; 0000-0003-4428-8053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2021.109120$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gholami, Meghdad</creatorcontrib><creatorcontrib>Afrasiab, Hamed</creatorcontrib><creatorcontrib>Baghestani, Ali Mohammad</creatorcontrib><creatorcontrib>Fathi, Alireza</creatorcontrib><title>A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials</title><title>Composites science and technology</title><description>In this paper, a novel and comprehensive multiscale finite element analysis is proposed to study the effect of hygrothermal aging on the behavior of fiber-reinforced composite materials. The temperature dependence of the material diffusivity and its spatial variation are considered. Fick's equation is numerically solved by the finite-difference approach and problems in which the temperature and/or humidity are different at the material boundaries are studied. In addition to the elastic properties degradation, the change of the coefficients of thermal and moisture expansion and the effect of the glass transition temperature in the hygrothermal aging process are considered. The algorithm has been used to study the time-dependent (transient) behavior of two sample laminated composites with different types of temperature and humidity boundary conditions. The maximum decline of about 87% and 74% has been observed in the transverse Young's modulus and shear modulus of the composite in the thickness direction. Furthermore, the coefficients of the thermal and moisture transverse expansion have been found to change from initial values of 0.12 and 7.31μmm°C to 0.45 and 7.96μmm°C in some hygrothermal conditions. The developed algorithm is applicable to a wide variety of composite materials and structures.
[Display omitted]</description><subject>ABAQUS parallel Finite element analysis</subject><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Composite materials</subject><subject>Degradation of elastic-hygrothermal properties</subject><subject>Elastic properties</subject><subject>Fiber composites</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Glass transition temperature</subject><subject>Heat transfer</subject><subject>Humidity</subject><subject>Hygrothermal aging</subject><subject>Laminar composites</subject><subject>Laminated composite material</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Moisture</subject><subject>Multiscale analysis</subject><subject>Shear modulus</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAyEQhonRxPrxHzCetwK7wHJsGr8SEy96JpQdWprdpQJt0vjnpa0Hj55m5s0778CD0B0lU0qoeFhPbRg2yfoMdjVlhNGiK8rIGZrQVqqKEk7O0YQwIaqa1-0lukppTQiRXLEJ-p7hMeygx8O2zz5Z0wPemGj6vmjOjyUXQw8DjBkPkFehwy5EnFeAU952exzccVjtlzGUJg6mx2bpxyUG58BmHMaj4fDMkA5xg8kQvenTDbpwpcDtb71Gn0-PH_OX6u39-XU-e6ts3ahccbvoiKqF6tqGcQXKtNw1rJXSCdKAXHAqebcAMEWRouXSdM411nHGwAhRX6P7U-4mhq8tpKzXYRvHclIzQQssJtumuNTJZWNIKYLTm-gHE_eaEn1grdf6D2t9YK1PrMvu_LQL5Rs7D1EXF4wWOh8LA90F_4-UHyHJkBc</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Gholami, Meghdad</creator><creator>Afrasiab, Hamed</creator><creator>Baghestani, Ali Mohammad</creator><creator>Fathi, Alireza</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2909-144X</orcidid><orcidid>https://orcid.org/0000-0003-4428-8053</orcidid></search><sort><creationdate>20220105</creationdate><title>A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials</title><author>Gholami, Meghdad ; Afrasiab, Hamed ; Baghestani, Ali Mohammad ; Fathi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-5cbd09369d84259e9a85f42877f604e7b5175dbeea77f76857adff4cf522ea663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>ABAQUS parallel Finite element analysis</topic><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Composite materials</topic><topic>Degradation of elastic-hygrothermal properties</topic><topic>Elastic properties</topic><topic>Fiber composites</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Glass transition temperature</topic><topic>Heat transfer</topic><topic>Humidity</topic><topic>Hygrothermal aging</topic><topic>Laminar composites</topic><topic>Laminated composite material</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Moisture</topic><topic>Multiscale analysis</topic><topic>Shear modulus</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gholami, Meghdad</creatorcontrib><creatorcontrib>Afrasiab, Hamed</creatorcontrib><creatorcontrib>Baghestani, Ali Mohammad</creatorcontrib><creatorcontrib>Fathi, Alireza</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gholami, Meghdad</au><au>Afrasiab, Hamed</au><au>Baghestani, Ali Mohammad</au><au>Fathi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials</atitle><jtitle>Composites science and technology</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>217</volume><spage>109120</spage><pages>109120-</pages><artnum>109120</artnum><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>In this paper, a novel and comprehensive multiscale finite element analysis is proposed to study the effect of hygrothermal aging on the behavior of fiber-reinforced composite materials. The temperature dependence of the material diffusivity and its spatial variation are considered. Fick's equation is numerically solved by the finite-difference approach and problems in which the temperature and/or humidity are different at the material boundaries are studied. In addition to the elastic properties degradation, the change of the coefficients of thermal and moisture expansion and the effect of the glass transition temperature in the hygrothermal aging process are considered. The algorithm has been used to study the time-dependent (transient) behavior of two sample laminated composites with different types of temperature and humidity boundary conditions. The maximum decline of about 87% and 74% has been observed in the transverse Young's modulus and shear modulus of the composite in the thickness direction. Furthermore, the coefficients of the thermal and moisture transverse expansion have been found to change from initial values of 0.12 and 7.31μmm°C to 0.45 and 7.96μmm°C in some hygrothermal conditions. The developed algorithm is applicable to a wide variety of composite materials and structures.
[Display omitted]</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2021.109120</doi><orcidid>https://orcid.org/0000-0002-2909-144X</orcidid><orcidid>https://orcid.org/0000-0003-4428-8053</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2022-01, Vol.217, p.109120, Article 109120 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2619122784 |
source | Access via ScienceDirect (Elsevier) |
subjects | ABAQUS parallel Finite element analysis Algorithms Boundary conditions Composite materials Degradation of elastic-hygrothermal properties Elastic properties Fiber composites Finite difference method Finite element analysis Finite element method Glass transition temperature Heat transfer Humidity Hygrothermal aging Laminar composites Laminated composite material Mechanical properties Modulus of elasticity Moisture Multiscale analysis Shear modulus Temperature Temperature dependence Thermal expansion |
title | A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20multiscale%20parallel%20finite%20element%20method%20for%20the%20study%20of%20the%20hygrothermal%20aging%20effect%20on%20the%20composite%20materials&rft.jtitle=Composites%20science%20and%20technology&rft.au=Gholami,%20Meghdad&rft.date=2022-01-05&rft.volume=217&rft.spage=109120&rft.pages=109120-&rft.artnum=109120&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2021.109120&rft_dat=%3Cproquest_cross%3E2619122784%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619122784&rft_id=info:pmid/&rft_els_id=S0266353821004760&rfr_iscdi=true |