Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network

The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect interve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2022-04, Vol.20 (4), p.634-642
Hauptverfasser: Medina Pedroso, Bruno, Sartori Guazzelli, Joao Vitor, Pereira da Silva, Alessandro, Matos da Silva Boschi, Silvia Regina, Cristina Martini, Silvia, Augusto Scardovelli, Terigi
Format: Artikel
Sprache:eng ; por
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 4
container_start_page 634
container_title Revista IEEE América Latina
container_volume 20
creator Medina Pedroso, Bruno
Sartori Guazzelli, Joao Vitor
Pereira da Silva, Alessandro
Matos da Silva Boschi, Silvia Regina
Cristina Martini, Silvia
Augusto Scardovelli, Terigi
description The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect intervention of a health professional to classify the risk of wound development. This study aims to demonstrate the development of a system capable of predicting the risk factor for the development of pressure injuries through the analysis of the Braden Scale parameters inserted by a health professional on an electronic interface, where through an algorithm based on artificial neural networks, which is responsible for processing, it will be possible to carry out the classification of the risk factor for pressure injuries. To acquire the friction and shear parameters, force sensors were used in a matrix architecture, together with a signal conditioning circuit as well as a control and communication drive via USB with the computer for sending data, as well as a graphical interface for entry of other parameters by the health professional.
doi_str_mv 10.1109/TLA.2022.9675469
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619033349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9675469</ieee_id><sourcerecordid>2619033349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-3fd7871858ad281242808e57086c362b74f84a57b042e1c846cba642e48497c3</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3wUvA89Z8bTY5lmJroajo4jWkabZNv1Inu0j_e7e2iqf3mHlvBn4I3VLSo5Toh3LS7zHCWE_LIhdSn6EOzYXKiNbs_J-_RFcpLQnhSireQR9vIa3w0Lo6Ah5G8M6mOmzn-H2far_BVTt-BZ9SAx6Pt8sGgk-4XEBs5gvchzpUwQW7xs--gR-pvyKsrtFFZdfJ35y0i8rhYzl4yiYvo_GgP8kcE6LOeDUrVEFVruyMKcoEU0T5vCBKOi7ZtBCVEjYvpkQwT50S0k2tbL1QQheOd9H98ewO4mfjU22WsYFt-9EwSTXhnAvdpsgx5SCmBL4yOwgbC3tDiTnAMy08c4BnTvDayt2xErz3f_Hf7TdxDWoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619033349</pqid></control><display><type>article</type><title>Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Medina Pedroso, Bruno ; Sartori Guazzelli, Joao Vitor ; Pereira da Silva, Alessandro ; Matos da Silva Boschi, Silvia Regina ; Cristina Martini, Silvia ; Augusto Scardovelli, Terigi</creator><creatorcontrib>Medina Pedroso, Bruno ; Sartori Guazzelli, Joao Vitor ; Pereira da Silva, Alessandro ; Matos da Silva Boschi, Silvia Regina ; Cristina Martini, Silvia ; Augusto Scardovelli, Terigi</creatorcontrib><description>The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect intervention of a health professional to classify the risk of wound development. This study aims to demonstrate the development of a system capable of predicting the risk factor for the development of pressure injuries through the analysis of the Braden Scale parameters inserted by a health professional on an electronic interface, where through an algorithm based on artificial neural networks, which is responsible for processing, it will be possible to carry out the classification of the risk factor for pressure injuries. To acquire the friction and shear parameters, force sensors were used in a matrix architecture, together with a signal conditioning circuit as well as a control and communication drive via USB with the computer for sending data, as well as a graphical interface for entry of other parameters by the health professional.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2022.9675469</identifier><language>eng ; por</language><publisher>Los Alamitos: IEEE</publisher><subject>Algorithms ; Artificial Neural Network ; Artificial neural networks ; Biomedical monitoring ; Braden Scale ; Circuits ; Embedded Electronics ; Forecasting ; Injuries ; Injury analysis ; Manuals ; Monitoring ; Neural networks ; Parameters ; Pressure Injuries ; Risk analysis ; Risk factors ; RNA ; Thin film transistors</subject><ispartof>Revista IEEE América Latina, 2022-04, Vol.20 (4), p.634-642</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3442-9932 ; 0000-0002-6523-9376 ; 0000-0001-8125-8844 ; 0000-0003-4766-8617 ; 0000-0003-0378-6056 ; 0000-0002-3430-8885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9675469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9675469$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Medina Pedroso, Bruno</creatorcontrib><creatorcontrib>Sartori Guazzelli, Joao Vitor</creatorcontrib><creatorcontrib>Pereira da Silva, Alessandro</creatorcontrib><creatorcontrib>Matos da Silva Boschi, Silvia Regina</creatorcontrib><creatorcontrib>Cristina Martini, Silvia</creatorcontrib><creatorcontrib>Augusto Scardovelli, Terigi</creatorcontrib><title>Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect intervention of a health professional to classify the risk of wound development. This study aims to demonstrate the development of a system capable of predicting the risk factor for the development of pressure injuries through the analysis of the Braden Scale parameters inserted by a health professional on an electronic interface, where through an algorithm based on artificial neural networks, which is responsible for processing, it will be possible to carry out the classification of the risk factor for pressure injuries. To acquire the friction and shear parameters, force sensors were used in a matrix architecture, together with a signal conditioning circuit as well as a control and communication drive via USB with the computer for sending data, as well as a graphical interface for entry of other parameters by the health professional.</description><subject>Algorithms</subject><subject>Artificial Neural Network</subject><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Braden Scale</subject><subject>Circuits</subject><subject>Embedded Electronics</subject><subject>Forecasting</subject><subject>Injuries</subject><subject>Injury analysis</subject><subject>Manuals</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Pressure Injuries</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Thin film transistors</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3wUvA89Z8bTY5lmJroajo4jWkabZNv1Inu0j_e7e2iqf3mHlvBn4I3VLSo5Toh3LS7zHCWE_LIhdSn6EOzYXKiNbs_J-_RFcpLQnhSireQR9vIa3w0Lo6Ah5G8M6mOmzn-H2far_BVTt-BZ9SAx6Pt8sGgk-4XEBs5gvchzpUwQW7xs--gR-pvyKsrtFFZdfJ35y0i8rhYzl4yiYvo_GgP8kcE6LOeDUrVEFVruyMKcoEU0T5vCBKOi7ZtBCVEjYvpkQwT50S0k2tbL1QQheOd9H98ewO4mfjU22WsYFt-9EwSTXhnAvdpsgx5SCmBL4yOwgbC3tDiTnAMy08c4BnTvDayt2xErz3f_Hf7TdxDWoE</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Medina Pedroso, Bruno</creator><creator>Sartori Guazzelli, Joao Vitor</creator><creator>Pereira da Silva, Alessandro</creator><creator>Matos da Silva Boschi, Silvia Regina</creator><creator>Cristina Martini, Silvia</creator><creator>Augusto Scardovelli, Terigi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3442-9932</orcidid><orcidid>https://orcid.org/0000-0002-6523-9376</orcidid><orcidid>https://orcid.org/0000-0001-8125-8844</orcidid><orcidid>https://orcid.org/0000-0003-4766-8617</orcidid><orcidid>https://orcid.org/0000-0003-0378-6056</orcidid><orcidid>https://orcid.org/0000-0002-3430-8885</orcidid></search><sort><creationdate>20220401</creationdate><title>Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network</title><author>Medina Pedroso, Bruno ; Sartori Guazzelli, Joao Vitor ; Pereira da Silva, Alessandro ; Matos da Silva Boschi, Silvia Regina ; Cristina Martini, Silvia ; Augusto Scardovelli, Terigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-3fd7871858ad281242808e57086c362b74f84a57b042e1c846cba642e48497c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Neural Network</topic><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Braden Scale</topic><topic>Circuits</topic><topic>Embedded Electronics</topic><topic>Forecasting</topic><topic>Injuries</topic><topic>Injury analysis</topic><topic>Manuals</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Pressure Injuries</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Thin film transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Medina Pedroso, Bruno</creatorcontrib><creatorcontrib>Sartori Guazzelli, Joao Vitor</creatorcontrib><creatorcontrib>Pereira da Silva, Alessandro</creatorcontrib><creatorcontrib>Matos da Silva Boschi, Silvia Regina</creatorcontrib><creatorcontrib>Cristina Martini, Silvia</creatorcontrib><creatorcontrib>Augusto Scardovelli, Terigi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Medina Pedroso, Bruno</au><au>Sartori Guazzelli, Joao Vitor</au><au>Pereira da Silva, Alessandro</au><au>Matos da Silva Boschi, Silvia Regina</au><au>Cristina Martini, Silvia</au><au>Augusto Scardovelli, Terigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>20</volume><issue>4</issue><spage>634</spage><epage>642</epage><pages>634-642</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The appearance of pressure injuries is very common in patients bedridden for a long time due to a surgical procedure or a recovery process caused by an accident. Many studies have been carried out to monitor and prevent this condition, but the methodology used requires the direct or indirect intervention of a health professional to classify the risk of wound development. This study aims to demonstrate the development of a system capable of predicting the risk factor for the development of pressure injuries through the analysis of the Braden Scale parameters inserted by a health professional on an electronic interface, where through an algorithm based on artificial neural networks, which is responsible for processing, it will be possible to carry out the classification of the risk factor for pressure injuries. To acquire the friction and shear parameters, force sensors were used in a matrix architecture, together with a signal conditioning circuit as well as a control and communication drive via USB with the computer for sending data, as well as a graphical interface for entry of other parameters by the health professional.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2022.9675469</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3442-9932</orcidid><orcidid>https://orcid.org/0000-0002-6523-9376</orcidid><orcidid>https://orcid.org/0000-0001-8125-8844</orcidid><orcidid>https://orcid.org/0000-0003-4766-8617</orcidid><orcidid>https://orcid.org/0000-0003-0378-6056</orcidid><orcidid>https://orcid.org/0000-0002-3430-8885</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2022-04, Vol.20 (4), p.634-642
issn 1548-0992
1548-0992
language eng ; por
recordid cdi_proquest_journals_2619033349
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Neural Network
Artificial neural networks
Biomedical monitoring
Braden Scale
Circuits
Embedded Electronics
Forecasting
Injuries
Injury analysis
Manuals
Monitoring
Neural networks
Parameters
Pressure Injuries
Risk analysis
Risk factors
RNA
Thin film transistors
title Risk Factor Forecasting System for Pressure Injuries Through Artificial Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20Factor%20Forecasting%20System%20for%20Pressure%20Injuries%20Through%20Artificial%20Neural%20Network&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Medina%20Pedroso,%20Bruno&rft.date=2022-04-01&rft.volume=20&rft.issue=4&rft.spage=634&rft.epage=642&rft.pages=634-642&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2022.9675469&rft_dat=%3Cproquest_RIE%3E2619033349%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619033349&rft_id=info:pmid/&rft_ieee_id=9675469&rfr_iscdi=true