Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices
This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2022-05, Vol.69 (5), p.5041-5049 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5049 |
---|---|
container_issue | 5 |
container_start_page | 5041 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 69 |
creator | Li, Sheng Liu, Siyang Zhang, Chi Qian, Le Xin, Shuxuan Ge, Chen Sun, Weifeng |
description | This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device. |
doi_str_mv | 10.1109/TIE.2021.3076705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619023789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427050</ieee_id><sourcerecordid>2619023789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFbvgpeA59T9yGaTo9ZaA0UF2_Oy2UzaLW027qYp_e_d0qKnYWZ-7w3zELoneEQIzp_mxWREMSUjhkUqML9AA8K5iPM8yS7RAFORxRgn6TW68X6NMUk44QOkx3bbKme8baKi6cF3Zqk6Yxsfhcmi0Ru1baGKi6ba6c70EH_vTadXpllGL7BSvbEuoHX0Zffgoqn6iP6BV-iNBn-Lrmq18XB3rkO0eJvMx-_x7HNajJ9nsWYs62IBpSgpzSnjmlKakpoKltYqrQDzhKqE09BoLaos0XVVasXLtKwVyVSVag5siB5Pvq2zP7vwilzbnWvCSRncckyZyPJA4ROlnfXeQS1bZ7bKHSTB8hilDFHKY5TyHGWQPJwkBgD-8DyhYYnZL7FicQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619023789</pqid></control><display><type>article</type><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</creator><creatorcontrib>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</creatorcontrib><description>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3076705</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Cascode devices ; Degradation ; Electric contacts ; Electrical performance degradations ; Gallium nitrides ; GaN switching devices ; HEMTs ; High electron mobility transistors ; Inductors ; inverse-piezoelectric induced failures ; Logic gates ; MODFETs ; Performance degradation ; Piezoelectricity ; Storage ; Stress ; Switching ; Threshold voltage ; unclamp-inductive-switching (UIS) capability</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-05, Vol.69 (5), p.5041-5049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</citedby><cites>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</cites><orcidid>0000-0002-3289-8877 ; 0000-0001-6498-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9427050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Qian, Le</creatorcontrib><creatorcontrib>Xin, Shuxuan</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</description><subject>Capacitance</subject><subject>Cascode devices</subject><subject>Degradation</subject><subject>Electric contacts</subject><subject>Electrical performance degradations</subject><subject>Gallium nitrides</subject><subject>GaN switching devices</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Inductors</subject><subject>inverse-piezoelectric induced failures</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>Performance degradation</subject><subject>Piezoelectricity</subject><subject>Storage</subject><subject>Stress</subject><subject>Switching</subject><subject>Threshold voltage</subject><subject>unclamp-inductive-switching (UIS) capability</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM1Lw0AQxRdRsFbvgpeA59T9yGaTo9ZaA0UF2_Oy2UzaLW027qYp_e_d0qKnYWZ-7w3zELoneEQIzp_mxWREMSUjhkUqML9AA8K5iPM8yS7RAFORxRgn6TW68X6NMUk44QOkx3bbKme8baKi6cF3Zqk6Yxsfhcmi0Ru1baGKi6ba6c70EH_vTadXpllGL7BSvbEuoHX0Zffgoqn6iP6BV-iNBn-Lrmq18XB3rkO0eJvMx-_x7HNajJ9nsWYs62IBpSgpzSnjmlKakpoKltYqrQDzhKqE09BoLaos0XVVasXLtKwVyVSVag5siB5Pvq2zP7vwilzbnWvCSRncckyZyPJA4ROlnfXeQS1bZ7bKHSTB8hilDFHKY5TyHGWQPJwkBgD-8DyhYYnZL7FicQ8</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Sheng</creator><creator>Liu, Siyang</creator><creator>Zhang, Chi</creator><creator>Qian, Le</creator><creator>Xin, Shuxuan</creator><creator>Ge, Chen</creator><creator>Sun, Weifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid></search><sort><creationdate>20220501</creationdate><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><author>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Cascode devices</topic><topic>Degradation</topic><topic>Electric contacts</topic><topic>Electrical performance degradations</topic><topic>Gallium nitrides</topic><topic>GaN switching devices</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Inductors</topic><topic>inverse-piezoelectric induced failures</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>Performance degradation</topic><topic>Piezoelectricity</topic><topic>Storage</topic><topic>Stress</topic><topic>Switching</topic><topic>Threshold voltage</topic><topic>unclamp-inductive-switching (UIS) capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Qian, Le</creatorcontrib><creatorcontrib>Xin, Shuxuan</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Sheng</au><au>Liu, Siyang</au><au>Zhang, Chi</au><au>Qian, Le</au><au>Xin, Shuxuan</au><au>Ge, Chen</au><au>Sun, Weifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>5041</spage><epage>5049</epage><pages>5041-5049</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3076705</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2022-05, Vol.69 (5), p.5041-5049 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_journals_2619023789 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitance Cascode devices Degradation Electric contacts Electrical performance degradations Gallium nitrides GaN switching devices HEMTs High electron mobility transistors Inductors inverse-piezoelectric induced failures Logic gates MODFETs Performance degradation Piezoelectricity Storage Stress Switching Threshold voltage unclamp-inductive-switching (UIS) capability |
title | Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20Investigations%20on%20Unclamped-Inductive-Switching%20Behaviors%20of%20Power%20GaN%20Switching%20Devices&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Sheng&rft.date=2022-05-01&rft.volume=69&rft.issue=5&rft.spage=5041&rft.epage=5049&rft.pages=5041-5049&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3076705&rft_dat=%3Cproquest_RIE%3E2619023789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619023789&rft_id=info:pmid/&rft_ieee_id=9427050&rfr_iscdi=true |