Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices

This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-05, Vol.69 (5), p.5041-5049
Hauptverfasser: Li, Sheng, Liu, Siyang, Zhang, Chi, Qian, Le, Xin, Shuxuan, Ge, Chen, Sun, Weifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5049
container_issue 5
container_start_page 5041
container_title IEEE transactions on industrial electronics (1982)
container_volume 69
creator Li, Sheng
Liu, Siyang
Zhang, Chi
Qian, Le
Xin, Shuxuan
Ge, Chen
Sun, Weifeng
description This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.
doi_str_mv 10.1109/TIE.2021.3076705
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619023789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9427050</ieee_id><sourcerecordid>2619023789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRsFbvgpeA59T9yGaTo9ZaA0UF2_Oy2UzaLW027qYp_e_d0qKnYWZ-7w3zELoneEQIzp_mxWREMSUjhkUqML9AA8K5iPM8yS7RAFORxRgn6TW68X6NMUk44QOkx3bbKme8baKi6cF3Zqk6Yxsfhcmi0Ru1baGKi6ba6c70EH_vTadXpllGL7BSvbEuoHX0Zffgoqn6iP6BV-iNBn-Lrmq18XB3rkO0eJvMx-_x7HNajJ9nsWYs62IBpSgpzSnjmlKakpoKltYqrQDzhKqE09BoLaos0XVVasXLtKwVyVSVag5siB5Pvq2zP7vwilzbnWvCSRncckyZyPJA4ROlnfXeQS1bZ7bKHSTB8hilDFHKY5TyHGWQPJwkBgD-8DyhYYnZL7FicQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619023789</pqid></control><display><type>article</type><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</creator><creatorcontrib>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</creatorcontrib><description>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3076705</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Cascode devices ; Degradation ; Electric contacts ; Electrical performance degradations ; Gallium nitrides ; GaN switching devices ; HEMTs ; High electron mobility transistors ; Inductors ; inverse-piezoelectric induced failures ; Logic gates ; MODFETs ; Performance degradation ; Piezoelectricity ; Storage ; Stress ; Switching ; Threshold voltage ; unclamp-inductive-switching (UIS) capability</subject><ispartof>IEEE transactions on industrial electronics (1982), 2022-05, Vol.69 (5), p.5041-5049</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</citedby><cites>FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</cites><orcidid>0000-0002-3289-8877 ; 0000-0001-6498-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9427050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9427050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Qian, Le</creatorcontrib><creatorcontrib>Xin, Shuxuan</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</description><subject>Capacitance</subject><subject>Cascode devices</subject><subject>Degradation</subject><subject>Electric contacts</subject><subject>Electrical performance degradations</subject><subject>Gallium nitrides</subject><subject>GaN switching devices</subject><subject>HEMTs</subject><subject>High electron mobility transistors</subject><subject>Inductors</subject><subject>inverse-piezoelectric induced failures</subject><subject>Logic gates</subject><subject>MODFETs</subject><subject>Performance degradation</subject><subject>Piezoelectricity</subject><subject>Storage</subject><subject>Stress</subject><subject>Switching</subject><subject>Threshold voltage</subject><subject>unclamp-inductive-switching (UIS) capability</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM1Lw0AQxRdRsFbvgpeA59T9yGaTo9ZaA0UF2_Oy2UzaLW027qYp_e_d0qKnYWZ-7w3zELoneEQIzp_mxWREMSUjhkUqML9AA8K5iPM8yS7RAFORxRgn6TW68X6NMUk44QOkx3bbKme8baKi6cF3Zqk6Yxsfhcmi0Ru1baGKi6ba6c70EH_vTadXpllGL7BSvbEuoHX0Zffgoqn6iP6BV-iNBn-Lrmq18XB3rkO0eJvMx-_x7HNajJ9nsWYs62IBpSgpzSnjmlKakpoKltYqrQDzhKqE09BoLaos0XVVasXLtKwVyVSVag5siB5Pvq2zP7vwilzbnWvCSRncckyZyPJA4ROlnfXeQS1bZ7bKHSTB8hilDFHKY5TyHGWQPJwkBgD-8DyhYYnZL7FicQ8</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Li, Sheng</creator><creator>Liu, Siyang</creator><creator>Zhang, Chi</creator><creator>Qian, Le</creator><creator>Xin, Shuxuan</creator><creator>Ge, Chen</creator><creator>Sun, Weifeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid></search><sort><creationdate>20220501</creationdate><title>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</title><author>Li, Sheng ; Liu, Siyang ; Zhang, Chi ; Qian, Le ; Xin, Shuxuan ; Ge, Chen ; Sun, Weifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7eb7b229235c22261f2736fa6de0542a452fa6cc7d84cfdbca5b6bfa18ad6c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Cascode devices</topic><topic>Degradation</topic><topic>Electric contacts</topic><topic>Electrical performance degradations</topic><topic>Gallium nitrides</topic><topic>GaN switching devices</topic><topic>HEMTs</topic><topic>High electron mobility transistors</topic><topic>Inductors</topic><topic>inverse-piezoelectric induced failures</topic><topic>Logic gates</topic><topic>MODFETs</topic><topic>Performance degradation</topic><topic>Piezoelectricity</topic><topic>Storage</topic><topic>Stress</topic><topic>Switching</topic><topic>Threshold voltage</topic><topic>unclamp-inductive-switching (UIS) capability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Qian, Le</creatorcontrib><creatorcontrib>Xin, Shuxuan</creatorcontrib><creatorcontrib>Ge, Chen</creatorcontrib><creatorcontrib>Sun, Weifeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Sheng</au><au>Liu, Siyang</au><au>Zhang, Chi</au><au>Qian, Le</au><au>Xin, Shuxuan</au><au>Ge, Chen</au><au>Sun, Weifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>5041</spage><epage>5049</epage><pages>5041-5049</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>This article makes the comparisons on the behaviors of three types of commercial GaN power switching devices, including Schottky gate p-GaN high electron mobility transistor (HEMT), ohmic gate p-GaN HEMT with hybrid drain, and Cascode GaN device, under single-pulse and repetitive unclamp-inductive-switching (UIS) conditions by experiments and simulations. It shows that all the three types of GaN devices withstand the UIS stress by storing energy in parasitic capacitances rather than by avalanche process, which is a different phenomenon compared with traditional Si/SiC devices. However, the failure phenomena under single-pulse UIS condition are different. For the two types of p-GaN gate devices, the inverse-piezoelectric induced punch-through makes the burnout under drain contact region. For the Cascode device, the breakdown of the inner Si device dominates the failure. As for the behaviors under repetitive UIS stresses, p-GaN gate device with hybrid drain performs the best, Schottky gate p-GaN HEMT shows the most serious electrical performance degradations due to the trapping effects and carrier storage phenomena, Cascode GaN device exhibits stable threshold voltage and acceptable degradations of on -state resistance due to the existence of inner Si device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3076705</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3289-8877</orcidid><orcidid>https://orcid.org/0000-0001-6498-9901</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2022-05, Vol.69 (5), p.5041-5049
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2619023789
source IEEE Electronic Library (IEL)
subjects Capacitance
Cascode devices
Degradation
Electric contacts
Electrical performance degradations
Gallium nitrides
GaN switching devices
HEMTs
High electron mobility transistors
Inductors
inverse-piezoelectric induced failures
Logic gates
MODFETs
Performance degradation
Piezoelectricity
Storage
Stress
Switching
Threshold voltage
unclamp-inductive-switching (UIS) capability
title Comparison Investigations on Unclamped-Inductive-Switching Behaviors of Power GaN Switching Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A18%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20Investigations%20on%20Unclamped-Inductive-Switching%20Behaviors%20of%20Power%20GaN%20Switching%20Devices&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Li,%20Sheng&rft.date=2022-05-01&rft.volume=69&rft.issue=5&rft.spage=5041&rft.epage=5049&rft.pages=5041-5049&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3076705&rft_dat=%3Cproquest_RIE%3E2619023789%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619023789&rft_id=info:pmid/&rft_ieee_id=9427050&rfr_iscdi=true