Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks
Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or with...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Ma, Yaobin Wei, Jingbo Huang, Xiangtao |
description | Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity. |
doi_str_mv | 10.1109/LGRS.2021.3126261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619023280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606709</ieee_id><sourcerecordid>2619023280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjzZNLufQOZgT_EC9Cml6Mrt1TU26if_elg2vzgvnec-BB6FLgkeEYHkznz6_jCimZMQI5ZSTIzQgaSpinGbkuM9JGqdSfJyisxBWGNNEiGyAPm91pWtT1sto4irnQ-RstHC124GvdNP0i0cXdGnWfZxt9BJC9F62X9EUavC6LXcQjYsOD9qXuooW0P44vw7n6MTqKsDFYQ7R2_3d6-Qhnj9NZ5PxPDZUsjY2IJMcSIJxnhlZWGMosWCsKbggBceGW8NS4FkqQEogwuY55BlmwLQGU7Ahut7fbbz73kJo1cptfd29VJ0GiSmjAncU2VPGuxA8WNX4cqP9ryJY9QZVb1D1BtXBYNe52ndKAPjnJcc8w5L9AUeVby4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619023280</pqid></control><display><type>article</type><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</creator><creatorcontrib>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</creatorcontrib><description>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3126261</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Color ; Color harmony ; Colour ; Coordinate systems ; Coordinates ; deep neural networks ; Digital imaging ; enblend ; Generative adversarial networks ; Generators ; Geographical coordinates ; Image color analysis ; Image resolution ; Kernel ; LandSat ; Methods ; MODIS ; mosaicking ; Remote sensing ; Remote sensors ; Satellite imagery ; Spatial resolution ; spatiotemporal fusion ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</citedby><cites>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</cites><orcidid>0000-0002-1621-4674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606709$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yaobin</creatorcontrib><creatorcontrib>Wei, Jingbo</creatorcontrib><creatorcontrib>Huang, Xiangtao</creatorcontrib><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</description><subject>Color</subject><subject>Color harmony</subject><subject>Colour</subject><subject>Coordinate systems</subject><subject>Coordinates</subject><subject>deep neural networks</subject><subject>Digital imaging</subject><subject>enblend</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Geographical coordinates</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>LandSat</subject><subject>Methods</subject><subject>MODIS</subject><subject>mosaicking</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Satellite imagery</subject><subject>Spatial resolution</subject><subject>spatiotemporal fusion</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjzZNLufQOZgT_EC9Cml6Mrt1TU26if_elg2vzgvnec-BB6FLgkeEYHkznz6_jCimZMQI5ZSTIzQgaSpinGbkuM9JGqdSfJyisxBWGNNEiGyAPm91pWtT1sto4irnQ-RstHC124GvdNP0i0cXdGnWfZxt9BJC9F62X9EUavC6LXcQjYsOD9qXuooW0P44vw7n6MTqKsDFYQ7R2_3d6-Qhnj9NZ5PxPDZUsjY2IJMcSIJxnhlZWGMosWCsKbggBceGW8NS4FkqQEogwuY55BlmwLQGU7Ahut7fbbz73kJo1cptfd29VJ0GiSmjAncU2VPGuxA8WNX4cqP9ryJY9QZVb1D1BtXBYNe52ndKAPjnJcc8w5L9AUeVby4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Yaobin</creator><creator>Wei, Jingbo</creator><creator>Huang, Xiangtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1621-4674</orcidid></search><sort><creationdate>2022</creationdate><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><author>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Color harmony</topic><topic>Colour</topic><topic>Coordinate systems</topic><topic>Coordinates</topic><topic>deep neural networks</topic><topic>Digital imaging</topic><topic>enblend</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Geographical coordinates</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>LandSat</topic><topic>Methods</topic><topic>MODIS</topic><topic>mosaicking</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Satellite imagery</topic><topic>Spatial resolution</topic><topic>spatiotemporal fusion</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yaobin</creatorcontrib><creatorcontrib>Wei, Jingbo</creatorcontrib><creatorcontrib>Huang, Xiangtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yaobin</au><au>Wei, Jingbo</au><au>Huang, Xiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3126261</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1621-4674</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2619023280 |
source | IEEE Electronic Library (IEL) |
subjects | Color Color harmony Colour Coordinate systems Coordinates deep neural networks Digital imaging enblend Generative adversarial networks Generators Geographical coordinates Image color analysis Image resolution Kernel LandSat Methods MODIS mosaicking Remote sensing Remote sensors Satellite imagery Spatial resolution spatiotemporal fusion Training |
title | Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Colors%20of%20Nonoverlapping%20Mosaicking%20Images%20With%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ma,%20Yaobin&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3126261&rft_dat=%3Cproquest_RIE%3E2619023280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619023280&rft_id=info:pmid/&rft_ieee_id=9606709&rfr_iscdi=true |