Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks

Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Hauptverfasser: Ma, Yaobin, Wei, Jingbo, Huang, Xiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Ma, Yaobin
Wei, Jingbo
Huang, Xiangtao
description Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.
doi_str_mv 10.1109/LGRS.2021.3126261
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619023280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606709</ieee_id><sourcerecordid>2619023280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjzZNLufQOZgT_EC9Cml6Mrt1TU26if_elg2vzgvnec-BB6FLgkeEYHkznz6_jCimZMQI5ZSTIzQgaSpinGbkuM9JGqdSfJyisxBWGNNEiGyAPm91pWtT1sto4irnQ-RstHC124GvdNP0i0cXdGnWfZxt9BJC9F62X9EUavC6LXcQjYsOD9qXuooW0P44vw7n6MTqKsDFYQ7R2_3d6-Qhnj9NZ5PxPDZUsjY2IJMcSIJxnhlZWGMosWCsKbggBceGW8NS4FkqQEogwuY55BlmwLQGU7Ahut7fbbz73kJo1cptfd29VJ0GiSmjAncU2VPGuxA8WNX4cqP9ryJY9QZVb1D1BtXBYNe52ndKAPjnJcc8w5L9AUeVby4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619023280</pqid></control><display><type>article</type><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</creator><creatorcontrib>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</creatorcontrib><description>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3126261</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Color ; Color harmony ; Colour ; Coordinate systems ; Coordinates ; deep neural networks ; Digital imaging ; enblend ; Generative adversarial networks ; Generators ; Geographical coordinates ; Image color analysis ; Image resolution ; Kernel ; LandSat ; Methods ; MODIS ; mosaicking ; Remote sensing ; Remote sensors ; Satellite imagery ; Spatial resolution ; spatiotemporal fusion ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</citedby><cites>FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</cites><orcidid>0000-0002-1621-4674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606709$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9606709$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ma, Yaobin</creatorcontrib><creatorcontrib>Wei, Jingbo</creatorcontrib><creatorcontrib>Huang, Xiangtao</creatorcontrib><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</description><subject>Color</subject><subject>Color harmony</subject><subject>Colour</subject><subject>Coordinate systems</subject><subject>Coordinates</subject><subject>deep neural networks</subject><subject>Digital imaging</subject><subject>enblend</subject><subject>Generative adversarial networks</subject><subject>Generators</subject><subject>Geographical coordinates</subject><subject>Image color analysis</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>LandSat</subject><subject>Methods</subject><subject>MODIS</subject><subject>mosaicking</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Satellite imagery</subject><subject>Spatial resolution</subject><subject>spatiotemporal fusion</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2ZjzZNLufQOZgT_EC9Cml6Mrt1TU26if_elg2vzgvnec-BB6FLgkeEYHkznz6_jCimZMQI5ZSTIzQgaSpinGbkuM9JGqdSfJyisxBWGNNEiGyAPm91pWtT1sto4irnQ-RstHC124GvdNP0i0cXdGnWfZxt9BJC9F62X9EUavC6LXcQjYsOD9qXuooW0P44vw7n6MTqKsDFYQ7R2_3d6-Qhnj9NZ5PxPDZUsjY2IJMcSIJxnhlZWGMosWCsKbggBceGW8NS4FkqQEogwuY55BlmwLQGU7Ahut7fbbz73kJo1cptfd29VJ0GiSmjAncU2VPGuxA8WNX4cqP9ryJY9QZVb1D1BtXBYNe52ndKAPjnJcc8w5L9AUeVby4</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ma, Yaobin</creator><creator>Wei, Jingbo</creator><creator>Huang, Xiangtao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1621-4674</orcidid></search><sort><creationdate>2022</creationdate><title>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</title><author>Ma, Yaobin ; Wei, Jingbo ; Huang, Xiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ce94be1400b7c9dfcc21fecfcd681d60c6fc35e6758e99e18fbbeb703e3aaecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Color harmony</topic><topic>Colour</topic><topic>Coordinate systems</topic><topic>Coordinates</topic><topic>deep neural networks</topic><topic>Digital imaging</topic><topic>enblend</topic><topic>Generative adversarial networks</topic><topic>Generators</topic><topic>Geographical coordinates</topic><topic>Image color analysis</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>LandSat</topic><topic>Methods</topic><topic>MODIS</topic><topic>mosaicking</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Satellite imagery</topic><topic>Spatial resolution</topic><topic>spatiotemporal fusion</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Yaobin</creatorcontrib><creatorcontrib>Wei, Jingbo</creatorcontrib><creatorcontrib>Huang, Xiangtao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, Yaobin</au><au>Wei, Jingbo</au><au>Huang, Xiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Remote sensing images of different moments or sensors can be stitched together to produce a new image under uniform geographic coordinate systems, where the overlapping areas were needed for color harmony. In this letter, a reference-based mosaicking method is proposed for images either with or without overlapping areas. The new method introduces a low-resolution image for spectral reference that spans all the mosaicking scope. A generative adversarial network is harnessed for color harmony, which transfers all the mosaicking images to the time of the reference image for further stitch with the graph cut and pyramid gradient methods. The proposed method is compared with three color harmony methods or tools by mosaicking the red, green, and blue bands of Landsat-8 images with MODIS as the reference. The digital evaluations demonstrate that the new method outweighs other methods regarding radiometric and spectral fidelity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3126261</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1621-4674</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2619023280
source IEEE Electronic Library (IEL)
subjects Color
Color harmony
Colour
Coordinate systems
Coordinates
deep neural networks
Digital imaging
enblend
Generative adversarial networks
Generators
Geographical coordinates
Image color analysis
Image resolution
Kernel
LandSat
Methods
MODIS
mosaicking
Remote sensing
Remote sensors
Satellite imagery
Spatial resolution
spatiotemporal fusion
Training
title Balancing Colors of Nonoverlapping Mosaicking Images With Generative Adversarial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Colors%20of%20Nonoverlapping%20Mosaicking%20Images%20With%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Ma,%20Yaobin&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3126261&rft_dat=%3Cproquest_RIE%3E2619023280%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619023280&rft_id=info:pmid/&rft_ieee_id=9606709&rfr_iscdi=true