Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints
Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on network science and engineering 2022-01, Vol.9 (1), p.55-66 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | IEEE transactions on network science and engineering |
container_volume | 9 |
creator | Mhaisen, Naram Abdellatif, Alaa Awad Mohamed, Amr Erbad, Aiman Guizani, Mohsen |
description | Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value. |
doi_str_mv | 10.1109/TNSE.2021.3053588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619018433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9337204</ieee_id><sourcerecordid>2619018433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoKLUPIF4Cnrcmme3u5qilVaFYoS14W7LJbI22yZpExJuP7taKp5kfvn8GPkIuOBtxzuT16nE5HQkm-AjYGMZVdUTOBECegZDPx_tdlFleyPKUDGN8ZYxxURUAcEa-F12yO7Wl64ghm5oN0psY7cbt0CVqHb23GFTQL1b30AxNnxIaOkcVnHUbeqtiH72jy6SSjemXewq-w5AsRqqcoY-YPn14oyvf-a3ffNGJdzEFZV2K5-SkVduIw785IOvZdDW5z-aLu4fJzTzTQkLKZAOmKXmRG2TQiHGLDehKFVVpFAPdmAZyAQVXumAib5WREnNdARZN1eoeHpCrw90u-PcPjKl-9R_B9S9rUXDJeJX3QgaEHygdfIwB27oLvZ7wVXNW713Xe9f13nX957rvXB46FhH_eQlQCpbDD1KOfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018433</pqid></control><display><type>article</type><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</creator><creatorcontrib>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</creatorcontrib><description>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2021.3053588</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Data models ; Distributed databases ; Edge computing ; Electronic devices ; Federated learning ; hierarchical federated learning ; imbalanced data ; Machine learning ; Mathematical models ; Network topologies ; Operations research ; Optimization ; Parameters ; Performance evaluation ; Servers ; Synchronization ; user-edge assignment</subject><ispartof>IEEE transactions on network science and engineering, 2022-01, Vol.9 (1), p.55-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</citedby><cites>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</cites><orcidid>0000-0001-7565-5253 ; 0000-0002-1583-7503 ; 0000-0002-8972-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9337204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9337204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mhaisen, Naram</creatorcontrib><creatorcontrib>Abdellatif, Alaa Awad</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Distributed databases</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Federated learning</subject><subject>hierarchical federated learning</subject><subject>imbalanced data</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Network topologies</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Synchronization</subject><subject>user-edge assignment</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoKLUPIF4Cnrcmme3u5qilVaFYoS14W7LJbI22yZpExJuP7taKp5kfvn8GPkIuOBtxzuT16nE5HQkm-AjYGMZVdUTOBECegZDPx_tdlFleyPKUDGN8ZYxxURUAcEa-F12yO7Wl64ghm5oN0psY7cbt0CVqHb23GFTQL1b30AxNnxIaOkcVnHUbeqtiH72jy6SSjemXewq-w5AsRqqcoY-YPn14oyvf-a3ffNGJdzEFZV2K5-SkVduIw785IOvZdDW5z-aLu4fJzTzTQkLKZAOmKXmRG2TQiHGLDehKFVVpFAPdmAZyAQVXumAib5WREnNdARZN1eoeHpCrw90u-PcPjKl-9R_B9S9rUXDJeJX3QgaEHygdfIwB27oLvZ7wVXNW713Xe9f13nX957rvXB46FhH_eQlQCpbDD1KOfVw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mhaisen, Naram</creator><creator>Abdellatif, Alaa Awad</creator><creator>Mohamed, Amr</creator><creator>Erbad, Aiman</creator><creator>Guizani, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></search><sort><creationdate>202201</creationdate><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><author>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Distributed databases</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Federated learning</topic><topic>hierarchical federated learning</topic><topic>imbalanced data</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Network topologies</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Synchronization</topic><topic>user-edge assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhaisen, Naram</creatorcontrib><creatorcontrib>Abdellatif, Alaa Awad</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mhaisen, Naram</au><au>Abdellatif, Alaa Awad</au><au>Mohamed, Amr</au><au>Erbad, Aiman</au><au>Guizani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>55</spage><epage>66</epage><pages>55-66</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2021.3053588</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2022-01, Vol.9 (1), p.55-66 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2619018433 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cloud computing Computational modeling Data models Distributed databases Edge computing Electronic devices Federated learning hierarchical federated learning imbalanced data Machine learning Mathematical models Network topologies Operations research Optimization Parameters Performance evaluation Servers Synchronization user-edge assignment |
title | Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20User-Edge%20Assignment%20in%20Hierarchical%20Federated%20Learning%20Based%20on%20Statistical%20Properties%20and%20Network%20Topology%20Constraints&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Mhaisen,%20Naram&rft.date=2022-01&rft.volume=9&rft.issue=1&rft.spage=55&rft.epage=66&rft.pages=55-66&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2021.3053588&rft_dat=%3Cproquest_RIE%3E2619018433%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018433&rft_id=info:pmid/&rft_ieee_id=9337204&rfr_iscdi=true |