Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints

Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2022-01, Vol.9 (1), p.55-66
Hauptverfasser: Mhaisen, Naram, Abdellatif, Alaa Awad, Mohamed, Amr, Erbad, Aiman, Guizani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue 1
container_start_page 55
container_title IEEE transactions on network science and engineering
container_volume 9
creator Mhaisen, Naram
Abdellatif, Alaa Awad
Mohamed, Amr
Erbad, Aiman
Guizani, Mohsen
description Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.
doi_str_mv 10.1109/TNSE.2021.3053588
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2619018433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9337204</ieee_id><sourcerecordid>2619018433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoKLUPIF4Cnrcmme3u5qilVaFYoS14W7LJbI22yZpExJuP7taKp5kfvn8GPkIuOBtxzuT16nE5HQkm-AjYGMZVdUTOBECegZDPx_tdlFleyPKUDGN8ZYxxURUAcEa-F12yO7Wl64ghm5oN0psY7cbt0CVqHb23GFTQL1b30AxNnxIaOkcVnHUbeqtiH72jy6SSjemXewq-w5AsRqqcoY-YPn14oyvf-a3ffNGJdzEFZV2K5-SkVduIw785IOvZdDW5z-aLu4fJzTzTQkLKZAOmKXmRG2TQiHGLDehKFVVpFAPdmAZyAQVXumAib5WREnNdARZN1eoeHpCrw90u-PcPjKl-9R_B9S9rUXDJeJX3QgaEHygdfIwB27oLvZ7wVXNW713Xe9f13nX957rvXB46FhH_eQlQCpbDD1KOfVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018433</pqid></control><display><type>article</type><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</creator><creatorcontrib>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</creatorcontrib><description>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2021.3053588</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Data models ; Distributed databases ; Edge computing ; Electronic devices ; Federated learning ; hierarchical federated learning ; imbalanced data ; Machine learning ; Mathematical models ; Network topologies ; Operations research ; Optimization ; Parameters ; Performance evaluation ; Servers ; Synchronization ; user-edge assignment</subject><ispartof>IEEE transactions on network science and engineering, 2022-01, Vol.9 (1), p.55-66</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</citedby><cites>FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</cites><orcidid>0000-0001-7565-5253 ; 0000-0002-1583-7503 ; 0000-0002-8972-8094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9337204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9337204$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mhaisen, Naram</creatorcontrib><creatorcontrib>Abdellatif, Alaa Awad</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Distributed databases</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Federated learning</subject><subject>hierarchical federated learning</subject><subject>imbalanced data</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Network topologies</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Performance evaluation</subject><subject>Servers</subject><subject>Synchronization</subject><subject>user-edge assignment</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoKLUPIF4Cnrcmme3u5qilVaFYoS14W7LJbI22yZpExJuP7taKp5kfvn8GPkIuOBtxzuT16nE5HQkm-AjYGMZVdUTOBECegZDPx_tdlFleyPKUDGN8ZYxxURUAcEa-F12yO7Wl64ghm5oN0psY7cbt0CVqHb23GFTQL1b30AxNnxIaOkcVnHUbeqtiH72jy6SSjemXewq-w5AsRqqcoY-YPn14oyvf-a3ffNGJdzEFZV2K5-SkVduIw785IOvZdDW5z-aLu4fJzTzTQkLKZAOmKXmRG2TQiHGLDehKFVVpFAPdmAZyAQVXumAib5WREnNdARZN1eoeHpCrw90u-PcPjKl-9R_B9S9rUXDJeJX3QgaEHygdfIwB27oLvZ7wVXNW713Xe9f13nX957rvXB46FhH_eQlQCpbDD1KOfVw</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Mhaisen, Naram</creator><creator>Abdellatif, Alaa Awad</creator><creator>Mohamed, Amr</creator><creator>Erbad, Aiman</creator><creator>Guizani, Mohsen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></search><sort><creationdate>202201</creationdate><title>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</title><author>Mhaisen, Naram ; Abdellatif, Alaa Awad ; Mohamed, Amr ; Erbad, Aiman ; Guizani, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9b3db7164de03b25feb3c8a687da03cbdb342361ac6024fad99e4c83e6b8fceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Distributed databases</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Federated learning</topic><topic>hierarchical federated learning</topic><topic>imbalanced data</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Network topologies</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Performance evaluation</topic><topic>Servers</topic><topic>Synchronization</topic><topic>user-edge assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mhaisen, Naram</creatorcontrib><creatorcontrib>Abdellatif, Alaa Awad</creatorcontrib><creatorcontrib>Mohamed, Amr</creatorcontrib><creatorcontrib>Erbad, Aiman</creatorcontrib><creatorcontrib>Guizani, Mohsen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mhaisen, Naram</au><au>Abdellatif, Alaa Awad</au><au>Mohamed, Amr</au><au>Erbad, Aiman</au><au>Guizani, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2022-01</date><risdate>2022</risdate><volume>9</volume><issue>1</issue><spage>55</spage><epage>66</epage><pages>55-66</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Distributed learning algorithms aim to leverage distributed and diverse data stored at users' devices to learn a global phenomena by performing training amongst participating devices and periodically aggregating their local models' parameters into a global model. Federated learning is a promising paradigm that allows for extending local training among the participant devices before aggregating the parameters, offering better communication efficiency. However, in the cases where the participants' data are strongly skewed (i.e., non-IID), the local models can overfit local data, leading to low performing global model. In this paper, we first show that a major cause of the performance drop is the weighted distance between the distribution over classes on users' devices and the global distribution. Then, to face this challenge, we leverage the edge computing paradigm to design a hierarchical learning system that performs Federated Gradient Descent on the user-edge layer and Federated Averaging on the edge-cloud layer. In this hierarchical architecture, we formalize and optimize this user-edge assignment problem such that edge-level data distributions turn to be similar (i.e., close to IID), which enhances the Federated Averaging performance. Our experiments on multiple real-world datasets show that the proposed optimized assignment is tractable and leads to faster convergence of models towards a better accuracy value.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2021.3053588</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7565-5253</orcidid><orcidid>https://orcid.org/0000-0002-1583-7503</orcidid><orcidid>https://orcid.org/0000-0002-8972-8094</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2022-01, Vol.9 (1), p.55-66
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2619018433
source IEEE Electronic Library (IEL)
subjects Algorithms
Cloud computing
Computational modeling
Data models
Distributed databases
Edge computing
Electronic devices
Federated learning
hierarchical federated learning
imbalanced data
Machine learning
Mathematical models
Network topologies
Operations research
Optimization
Parameters
Performance evaluation
Servers
Synchronization
user-edge assignment
title Optimal User-Edge Assignment in Hierarchical Federated Learning Based on Statistical Properties and Network Topology Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A03%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20User-Edge%20Assignment%20in%20Hierarchical%20Federated%20Learning%20Based%20on%20Statistical%20Properties%20and%20Network%20Topology%20Constraints&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Mhaisen,%20Naram&rft.date=2022-01&rft.volume=9&rft.issue=1&rft.spage=55&rft.epage=66&rft.pages=55-66&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2021.3053588&rft_dat=%3Cproquest_RIE%3E2619018433%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018433&rft_id=info:pmid/&rft_ieee_id=9337204&rfr_iscdi=true