Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection
When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. T...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.3144-3163 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3163 |
---|---|
container_issue | |
container_start_page | 3144 |
container_title | IEEE access |
container_volume | 10 |
creator | Razaque, Abdul Alotaibi, Bandar Alotaibi, Munif Amsaad, Fathi Manasov, Ansagan Hariri, Salim Yergaliyeva, Banu B. Alotaibi, Aziz |
description | When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate. |
doi_str_mv | 10.1109/ACCESS.2021.3137078 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2619018146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656746</ieee_id><doaj_id>oai_doaj_org_article_1d8c7588b8d14d2e8fb7775eb94c7953</doaj_id><sourcerecordid>2619018146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</originalsourceid><addsrcrecordid>eNpNUclKxEAQDaLgoH7BXAKeM_aS3o5jHBdwAUfPTae7opmJ6bHTQfx7WyNiXV5RvKXgZdkcowXGSJ0tq2q1Xi8IInhBMRVIyL1sRjBXBWWU7__bD7OTYdigNDKdmJhl9-edt1v7atq-WPWm7sDlFwC7_BHsGAL0Mb-HMZguQfzwYZvfeQdd3viQV11rt7VpY1JEsLH1_XF20JhugJNfPMqeL1dP1XVx-3B1Uy1vC1siGQvikCGGWqNoI5DDJSYWOGOEQtlwU8sSpGKElU5C3RDFlDBKCWcNR0QQRI-ym8nXebPRu9C-mfCpvWn1z8GHF21CbG0HGjtpBZOylinHEZBNLYRgUKvSCsVo8jqdvHbBv48wRL3xY-jT-5pwrBCWuOSJRSeWDX4YAjR_qRjp7x701IP-7kH_9pBU80nVAsCfQnHGRfL8AjHngjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018146</pqid></control><display><type>article</type><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</creator><creatorcontrib>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</creatorcontrib><description>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3137078</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Blockchain ; Browsers ; Clickbait ; Convolutional neural networks ; Cryptography ; fraudulent resources ; Internet ; Multilayers ; Neural networks ; Phishing ; Recurrent neural networks ; scam ; Search process ; security ; Social networking (online) ; Social networks</subject><ispartof>IEEE access, 2022, Vol.10, p.3144-3163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</citedby><cites>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</cites><orcidid>0000-0003-2181-7143 ; 0000-0002-1641-5046 ; 0000-0001-9956-2027 ; 0000-0002-3342-6716 ; 0000-0002-6890-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656746$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Razaque, Abdul</creatorcontrib><creatorcontrib>Alotaibi, Bandar</creatorcontrib><creatorcontrib>Alotaibi, Munif</creatorcontrib><creatorcontrib>Amsaad, Fathi</creatorcontrib><creatorcontrib>Manasov, Ansagan</creatorcontrib><creatorcontrib>Hariri, Salim</creatorcontrib><creatorcontrib>Yergaliyeva, Banu B.</creatorcontrib><creatorcontrib>Alotaibi, Aziz</creatorcontrib><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Blockchain</subject><subject>Browsers</subject><subject>Clickbait</subject><subject>Convolutional neural networks</subject><subject>Cryptography</subject><subject>fraudulent resources</subject><subject>Internet</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Phishing</subject><subject>Recurrent neural networks</subject><subject>scam</subject><subject>Search process</subject><subject>security</subject><subject>Social networking (online)</subject><subject>Social networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclKxEAQDaLgoH7BXAKeM_aS3o5jHBdwAUfPTae7opmJ6bHTQfx7WyNiXV5RvKXgZdkcowXGSJ0tq2q1Xi8IInhBMRVIyL1sRjBXBWWU7__bD7OTYdigNDKdmJhl9-edt1v7atq-WPWm7sDlFwC7_BHsGAL0Mb-HMZguQfzwYZvfeQdd3viQV11rt7VpY1JEsLH1_XF20JhugJNfPMqeL1dP1XVx-3B1Uy1vC1siGQvikCGGWqNoI5DDJSYWOGOEQtlwU8sSpGKElU5C3RDFlDBKCWcNR0QQRI-ym8nXebPRu9C-mfCpvWn1z8GHF21CbG0HGjtpBZOylinHEZBNLYRgUKvSCsVo8jqdvHbBv48wRL3xY-jT-5pwrBCWuOSJRSeWDX4YAjR_qRjp7x701IP-7kH_9pBU80nVAsCfQnHGRfL8AjHngjw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Razaque, Abdul</creator><creator>Alotaibi, Bandar</creator><creator>Alotaibi, Munif</creator><creator>Amsaad, Fathi</creator><creator>Manasov, Ansagan</creator><creator>Hariri, Salim</creator><creator>Yergaliyeva, Banu B.</creator><creator>Alotaibi, Aziz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2181-7143</orcidid><orcidid>https://orcid.org/0000-0002-1641-5046</orcidid><orcidid>https://orcid.org/0000-0001-9956-2027</orcidid><orcidid>https://orcid.org/0000-0002-3342-6716</orcidid><orcidid>https://orcid.org/0000-0002-6890-0799</orcidid></search><sort><creationdate>2022</creationdate><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><author>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Blockchain</topic><topic>Browsers</topic><topic>Clickbait</topic><topic>Convolutional neural networks</topic><topic>Cryptography</topic><topic>fraudulent resources</topic><topic>Internet</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Phishing</topic><topic>Recurrent neural networks</topic><topic>scam</topic><topic>Search process</topic><topic>security</topic><topic>Social networking (online)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razaque, Abdul</creatorcontrib><creatorcontrib>Alotaibi, Bandar</creatorcontrib><creatorcontrib>Alotaibi, Munif</creatorcontrib><creatorcontrib>Amsaad, Fathi</creatorcontrib><creatorcontrib>Manasov, Ansagan</creatorcontrib><creatorcontrib>Hariri, Salim</creatorcontrib><creatorcontrib>Yergaliyeva, Banu B.</creatorcontrib><creatorcontrib>Alotaibi, Aziz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razaque, Abdul</au><au>Alotaibi, Bandar</au><au>Alotaibi, Munif</au><au>Amsaad, Fathi</au><au>Manasov, Ansagan</au><au>Hariri, Salim</au><au>Yergaliyeva, Banu B.</au><au>Alotaibi, Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>3144</spage><epage>3163</epage><pages>3144-3163</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3137078</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2181-7143</orcidid><orcidid>https://orcid.org/0000-0002-1641-5046</orcidid><orcidid>https://orcid.org/0000-0001-9956-2027</orcidid><orcidid>https://orcid.org/0000-0002-3342-6716</orcidid><orcidid>https://orcid.org/0000-0002-6890-0799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.3144-3163 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2619018146 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Artificial neural networks Blockchain Browsers Clickbait Convolutional neural networks Cryptography fraudulent resources Internet Multilayers Neural networks Phishing Recurrent neural networks scam Search process security Social networking (online) Social networks |
title | Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%20Deep%20Recurrent%20Neural%20Network%20Model%20for%20Clickbait%20Detection&rft.jtitle=IEEE%20access&rft.au=Razaque,%20Abdul&rft.date=2022&rft.volume=10&rft.spage=3144&rft.epage=3163&rft.pages=3144-3163&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3137078&rft_dat=%3Cproquest_doaj_%3E2619018146%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018146&rft_id=info:pmid/&rft_ieee_id=9656746&rft_doaj_id=oai_doaj_org_article_1d8c7588b8d14d2e8fb7775eb94c7953&rfr_iscdi=true |