Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection

When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.3144-3163
Hauptverfasser: Razaque, Abdul, Alotaibi, Bandar, Alotaibi, Munif, Amsaad, Fathi, Manasov, Ansagan, Hariri, Salim, Yergaliyeva, Banu B., Alotaibi, Aziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3163
container_issue
container_start_page 3144
container_title IEEE access
container_volume 10
creator Razaque, Abdul
Alotaibi, Bandar
Alotaibi, Munif
Amsaad, Fathi
Manasov, Ansagan
Hariri, Salim
Yergaliyeva, Banu B.
Alotaibi, Aziz
description When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.
doi_str_mv 10.1109/ACCESS.2021.3137078
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2619018146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9656746</ieee_id><doaj_id>oai_doaj_org_article_1d8c7588b8d14d2e8fb7775eb94c7953</doaj_id><sourcerecordid>2619018146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</originalsourceid><addsrcrecordid>eNpNUclKxEAQDaLgoH7BXAKeM_aS3o5jHBdwAUfPTae7opmJ6bHTQfx7WyNiXV5RvKXgZdkcowXGSJ0tq2q1Xi8IInhBMRVIyL1sRjBXBWWU7__bD7OTYdigNDKdmJhl9-edt1v7atq-WPWm7sDlFwC7_BHsGAL0Mb-HMZguQfzwYZvfeQdd3viQV11rt7VpY1JEsLH1_XF20JhugJNfPMqeL1dP1XVx-3B1Uy1vC1siGQvikCGGWqNoI5DDJSYWOGOEQtlwU8sSpGKElU5C3RDFlDBKCWcNR0QQRI-ym8nXebPRu9C-mfCpvWn1z8GHF21CbG0HGjtpBZOylinHEZBNLYRgUKvSCsVo8jqdvHbBv48wRL3xY-jT-5pwrBCWuOSJRSeWDX4YAjR_qRjp7x701IP-7kH_9pBU80nVAsCfQnHGRfL8AjHngjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018146</pqid></control><display><type>article</type><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</creator><creatorcontrib>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</creatorcontrib><description>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3137078</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Blockchain ; Browsers ; Clickbait ; Convolutional neural networks ; Cryptography ; fraudulent resources ; Internet ; Multilayers ; Neural networks ; Phishing ; Recurrent neural networks ; scam ; Search process ; security ; Social networking (online) ; Social networks</subject><ispartof>IEEE access, 2022, Vol.10, p.3144-3163</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</citedby><cites>FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</cites><orcidid>0000-0003-2181-7143 ; 0000-0002-1641-5046 ; 0000-0001-9956-2027 ; 0000-0002-3342-6716 ; 0000-0002-6890-0799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9656746$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Razaque, Abdul</creatorcontrib><creatorcontrib>Alotaibi, Bandar</creatorcontrib><creatorcontrib>Alotaibi, Munif</creatorcontrib><creatorcontrib>Amsaad, Fathi</creatorcontrib><creatorcontrib>Manasov, Ansagan</creatorcontrib><creatorcontrib>Hariri, Salim</creatorcontrib><creatorcontrib>Yergaliyeva, Banu B.</creatorcontrib><creatorcontrib>Alotaibi, Aziz</creatorcontrib><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><title>IEEE access</title><addtitle>Access</addtitle><description>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Blockchain</subject><subject>Browsers</subject><subject>Clickbait</subject><subject>Convolutional neural networks</subject><subject>Cryptography</subject><subject>fraudulent resources</subject><subject>Internet</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Phishing</subject><subject>Recurrent neural networks</subject><subject>scam</subject><subject>Search process</subject><subject>security</subject><subject>Social networking (online)</subject><subject>Social networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclKxEAQDaLgoH7BXAKeM_aS3o5jHBdwAUfPTae7opmJ6bHTQfx7WyNiXV5RvKXgZdkcowXGSJ0tq2q1Xi8IInhBMRVIyL1sRjBXBWWU7__bD7OTYdigNDKdmJhl9-edt1v7atq-WPWm7sDlFwC7_BHsGAL0Mb-HMZguQfzwYZvfeQdd3viQV11rt7VpY1JEsLH1_XF20JhugJNfPMqeL1dP1XVx-3B1Uy1vC1siGQvikCGGWqNoI5DDJSYWOGOEQtlwU8sSpGKElU5C3RDFlDBKCWcNR0QQRI-ym8nXebPRu9C-mfCpvWn1z8GHF21CbG0HGjtpBZOylinHEZBNLYRgUKvSCsVo8jqdvHbBv48wRL3xY-jT-5pwrBCWuOSJRSeWDX4YAjR_qRjp7x701IP-7kH_9pBU80nVAsCfQnHGRfL8AjHngjw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Razaque, Abdul</creator><creator>Alotaibi, Bandar</creator><creator>Alotaibi, Munif</creator><creator>Amsaad, Fathi</creator><creator>Manasov, Ansagan</creator><creator>Hariri, Salim</creator><creator>Yergaliyeva, Banu B.</creator><creator>Alotaibi, Aziz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2181-7143</orcidid><orcidid>https://orcid.org/0000-0002-1641-5046</orcidid><orcidid>https://orcid.org/0000-0001-9956-2027</orcidid><orcidid>https://orcid.org/0000-0002-3342-6716</orcidid><orcidid>https://orcid.org/0000-0002-6890-0799</orcidid></search><sort><creationdate>2022</creationdate><title>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</title><author>Razaque, Abdul ; Alotaibi, Bandar ; Alotaibi, Munif ; Amsaad, Fathi ; Manasov, Ansagan ; Hariri, Salim ; Yergaliyeva, Banu B. ; Alotaibi, Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2d0a2a3ca93f70d1412ce65523e4f6ab84e895254d8ebf29597a997dca6027203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Blockchain</topic><topic>Browsers</topic><topic>Clickbait</topic><topic>Convolutional neural networks</topic><topic>Cryptography</topic><topic>fraudulent resources</topic><topic>Internet</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Phishing</topic><topic>Recurrent neural networks</topic><topic>scam</topic><topic>Search process</topic><topic>security</topic><topic>Social networking (online)</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Razaque, Abdul</creatorcontrib><creatorcontrib>Alotaibi, Bandar</creatorcontrib><creatorcontrib>Alotaibi, Munif</creatorcontrib><creatorcontrib>Amsaad, Fathi</creatorcontrib><creatorcontrib>Manasov, Ansagan</creatorcontrib><creatorcontrib>Hariri, Salim</creatorcontrib><creatorcontrib>Yergaliyeva, Banu B.</creatorcontrib><creatorcontrib>Alotaibi, Aziz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Razaque, Abdul</au><au>Alotaibi, Bandar</au><au>Alotaibi, Munif</au><au>Amsaad, Fathi</au><au>Manasov, Ansagan</au><au>Hariri, Salim</au><au>Yergaliyeva, Banu B.</au><au>Alotaibi, Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>3144</spage><epage>3163</epage><pages>3144-3163</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>When people use social networks, they often fall prey to a clickbait scam. The scammer attempts to create a striking headline that attracts the majority of users and attaches a link. The user follows the link and can be redirected to a fraudulent resource where the user easily loses personal data. To solve this problem, a Blockchain-enabled deep recurrent neural network (BDRNN) is proposed to detect the nature safe and malicious clickbait from the contents. The proposed BDRNN consists of three phases: analysis of clickbait and source rating, clickbait search process and multi-layered clickbait detection. The analysis of clickbait and source rating phase helps to analyze different sources to detect the clickbait and also rating the content-sources. To achieve the clickbait analysis and source rating, the detection of blocklisted/allowlisted source and source rating check algorithms are introduced. The clickbait search process is accomplished by incorporating the binary search features for a faster and more efficient search process for malicious content-detection. The multi-layered clickbait detection is main phase of the proposed BDRNN that consists of three models: content-to-vector model (layer-1), deep neural network model(layer-2), and Blockchain-enabled malicious content detection model (layer-3). These models collectively detect the malicious and safe clickbait from the contents. The extensive experiments are conducted to determine the effectiveness of the proposed BDRNN model and compared with the existing state-of-the-art neural network models designed for clickbait detection, and the result demonstrates that the proposed BDRNN model outperforms the counterparts from the, accuracy, link detection, memory usage, analogous perspectives, and attacker's successful content capturing rate.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3137078</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2181-7143</orcidid><orcidid>https://orcid.org/0000-0002-1641-5046</orcidid><orcidid>https://orcid.org/0000-0001-9956-2027</orcidid><orcidid>https://orcid.org/0000-0002-3342-6716</orcidid><orcidid>https://orcid.org/0000-0002-6890-0799</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.3144-3163
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2619018146
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Artificial neural networks
Blockchain
Browsers
Clickbait
Convolutional neural networks
Cryptography
fraudulent resources
Internet
Multilayers
Neural networks
Phishing
Recurrent neural networks
scam
Search process
security
Social networking (online)
Social networks
title Blockchain-Enabled Deep Recurrent Neural Network Model for Clickbait Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blockchain-Enabled%20Deep%20Recurrent%20Neural%20Network%20Model%20for%20Clickbait%20Detection&rft.jtitle=IEEE%20access&rft.au=Razaque,%20Abdul&rft.date=2022&rft.volume=10&rft.spage=3144&rft.epage=3163&rft.pages=3144-3163&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3137078&rft_dat=%3Cproquest_doaj_%3E2619018146%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018146&rft_id=info:pmid/&rft_ieee_id=9656746&rft_doaj_id=oai_doaj_org_article_1d8c7588b8d14d2e8fb7775eb94c7953&rfr_iscdi=true