Experimental investigation and thin-layer modelling of cassava slice drying

This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2022, Vol.147 (2), p.1379-1387
Hauptverfasser: Gao, Yu, Yang, Xiaoxiao, Chu, Leizhe, Zhang, Yanguo, Li, Qinghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue 2
container_start_page 1379
container_title Journal of thermal analysis and calorimetry
container_volume 147
creator Gao, Yu
Yang, Xiaoxiao
Chu, Leizhe
Zhang, Yanguo
Li, Qinghai
description This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors for cassava slice drying. Based on the experimental data, the activation energy for diffusion was calculated to be 39.37 kJ mol −1 , characterizing the drying difficulty of the cassava slice drying. Ten thin-layer drying models, which were semi-theoretical models or empirical, were fitted to the drying data, and the correlation coefficient ( R 2 ), Chi-square ( χ 2 ), root mean square error and applicability were compared. It was concluded that two-term exponential model described the drying most satisfactorily, with good statistical analysis coefficients and simple functions of model parameters. The model parameters were determined as functions of temperature and slice thickness. Predictions of one case with two-term exponential model were compared with experimental data and the correlation coefficient was 0.99852, indicating good prediction.
doi_str_mv 10.1007/s10973-020-10401-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2618931293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689340351</galeid><sourcerecordid>A689340351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7dafcf6a2efd3f5ae95f0e2023e53f6a2daffca60a3fe1d161414ee25b8834183</originalsourceid><addsrcrecordid>eNp9kU9Lw0AQxYMoWKtfwFPAk4fozG6SJsdSqhYLgn_Oy5jMxi3ppu6m0n57VyOIF9nDDm9-b3eYF0XnCFcIMLn2COVEJiAgQUgBk91BNMKsKBJRivww1DLUOWZwHJ14vwKAsgQcRffz3YadWbPtqY2N_WDfm4Z609mYbB33b8YmLe3Zxeuu5rY1tok7HVfkPX1Q7FtTcVy7fdBPoyNNreezn3scvdzMn2d3yfLhdjGbLpNKlqJPJjXpSuckWNdSZ8RlpoEFCMmZ_NJDX1eUA0nNWGOOKabMInstCpliIcfRxfDuxnXv2zCwWnVbZ8OXSuRYlBJFKQN1NVANtayM1V3vqAqn5rWpOsvaBH2aBz4FmWEwXP4xBKbnXd_Q1nu1eHr8y4qBrVznvWOtNmGJ5PYKQX0looZEVEhEfSeidsEkB5MPsG3Y_c79j-sT5S2O6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618931293</pqid></control><display><type>article</type><title>Experimental investigation and thin-layer modelling of cassava slice drying</title><source>SpringerNature Journals</source><creator>Gao, Yu ; Yang, Xiaoxiao ; Chu, Leizhe ; Zhang, Yanguo ; Li, Qinghai</creator><creatorcontrib>Gao, Yu ; Yang, Xiaoxiao ; Chu, Leizhe ; Zhang, Yanguo ; Li, Qinghai</creatorcontrib><description>This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors for cassava slice drying. Based on the experimental data, the activation energy for diffusion was calculated to be 39.37 kJ mol −1 , characterizing the drying difficulty of the cassava slice drying. Ten thin-layer drying models, which were semi-theoretical models or empirical, were fitted to the drying data, and the correlation coefficient ( R 2 ), Chi-square ( χ 2 ), root mean square error and applicability were compared. It was concluded that two-term exponential model described the drying most satisfactorily, with good statistical analysis coefficients and simple functions of model parameters. The model parameters were determined as functions of temperature and slice thickness. Predictions of one case with two-term exponential model were compared with experimental data and the correlation coefficient was 0.99852, indicating good prediction.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-020-10401-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Activation energy ; Analytical Chemistry ; Cassava ; Chemistry ; Chemistry and Materials Science ; Chi-square test ; Correlation coefficients ; Drying ; Empirical analysis ; Fixed beds ; Inorganic Chemistry ; Mathematical models ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Statistical analysis ; Thickness</subject><ispartof>Journal of thermal analysis and calorimetry, 2022, Vol.147 (2), p.1379-1387</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7dafcf6a2efd3f5ae95f0e2023e53f6a2daffca60a3fe1d161414ee25b8834183</citedby><cites>FETCH-LOGICAL-c392t-7dafcf6a2efd3f5ae95f0e2023e53f6a2daffca60a3fe1d161414ee25b8834183</cites><orcidid>0000-0002-5300-9629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-020-10401-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-020-10401-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Chu, Leizhe</creatorcontrib><creatorcontrib>Zhang, Yanguo</creatorcontrib><creatorcontrib>Li, Qinghai</creatorcontrib><title>Experimental investigation and thin-layer modelling of cassava slice drying</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors for cassava slice drying. Based on the experimental data, the activation energy for diffusion was calculated to be 39.37 kJ mol −1 , characterizing the drying difficulty of the cassava slice drying. Ten thin-layer drying models, which were semi-theoretical models or empirical, were fitted to the drying data, and the correlation coefficient ( R 2 ), Chi-square ( χ 2 ), root mean square error and applicability were compared. It was concluded that two-term exponential model described the drying most satisfactorily, with good statistical analysis coefficients and simple functions of model parameters. The model parameters were determined as functions of temperature and slice thickness. Predictions of one case with two-term exponential model were compared with experimental data and the correlation coefficient was 0.99852, indicating good prediction.</description><subject>Activation energy</subject><subject>Analytical Chemistry</subject><subject>Cassava</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chi-square test</subject><subject>Correlation coefficients</subject><subject>Drying</subject><subject>Empirical analysis</subject><subject>Fixed beds</subject><subject>Inorganic Chemistry</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Statistical analysis</subject><subject>Thickness</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9Lw0AQxYMoWKtfwFPAk4fozG6SJsdSqhYLgn_Oy5jMxi3ppu6m0n57VyOIF9nDDm9-b3eYF0XnCFcIMLn2COVEJiAgQUgBk91BNMKsKBJRivww1DLUOWZwHJ14vwKAsgQcRffz3YadWbPtqY2N_WDfm4Z609mYbB33b8YmLe3Zxeuu5rY1tok7HVfkPX1Q7FtTcVy7fdBPoyNNreezn3scvdzMn2d3yfLhdjGbLpNKlqJPJjXpSuckWNdSZ8RlpoEFCMmZ_NJDX1eUA0nNWGOOKabMInstCpliIcfRxfDuxnXv2zCwWnVbZ8OXSuRYlBJFKQN1NVANtayM1V3vqAqn5rWpOsvaBH2aBz4FmWEwXP4xBKbnXd_Q1nu1eHr8y4qBrVznvWOtNmGJ5PYKQX0looZEVEhEfSeidsEkB5MPsG3Y_c79j-sT5S2O6A</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gao, Yu</creator><creator>Yang, Xiaoxiao</creator><creator>Chu, Leizhe</creator><creator>Zhang, Yanguo</creator><creator>Li, Qinghai</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-5300-9629</orcidid></search><sort><creationdate>2022</creationdate><title>Experimental investigation and thin-layer modelling of cassava slice drying</title><author>Gao, Yu ; Yang, Xiaoxiao ; Chu, Leizhe ; Zhang, Yanguo ; Li, Qinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7dafcf6a2efd3f5ae95f0e2023e53f6a2daffca60a3fe1d161414ee25b8834183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activation energy</topic><topic>Analytical Chemistry</topic><topic>Cassava</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chi-square test</topic><topic>Correlation coefficients</topic><topic>Drying</topic><topic>Empirical analysis</topic><topic>Fixed beds</topic><topic>Inorganic Chemistry</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Statistical analysis</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Yang, Xiaoxiao</creatorcontrib><creatorcontrib>Chu, Leizhe</creatorcontrib><creatorcontrib>Zhang, Yanguo</creatorcontrib><creatorcontrib>Li, Qinghai</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yu</au><au>Yang, Xiaoxiao</au><au>Chu, Leizhe</au><au>Zhang, Yanguo</au><au>Li, Qinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation and thin-layer modelling of cassava slice drying</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2022</date><risdate>2022</risdate><volume>147</volume><issue>2</issue><spage>1379</spage><epage>1387</epage><pages>1379-1387</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This study investigated the effects of drying temperature, slice thickness and slice angle on cassava slice drying and determined suitable thin-layer model with an online weighing fixed bed (Macro-TGA). The experimental results showed that drying temperature and slice thickness were critical factors for cassava slice drying. Based on the experimental data, the activation energy for diffusion was calculated to be 39.37 kJ mol −1 , characterizing the drying difficulty of the cassava slice drying. Ten thin-layer drying models, which were semi-theoretical models or empirical, were fitted to the drying data, and the correlation coefficient ( R 2 ), Chi-square ( χ 2 ), root mean square error and applicability were compared. It was concluded that two-term exponential model described the drying most satisfactorily, with good statistical analysis coefficients and simple functions of model parameters. The model parameters were determined as functions of temperature and slice thickness. Predictions of one case with two-term exponential model were compared with experimental data and the correlation coefficient was 0.99852, indicating good prediction.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-020-10401-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5300-9629</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2022, Vol.147 (2), p.1379-1387
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2618931293
source SpringerNature Journals
subjects Activation energy
Analytical Chemistry
Cassava
Chemistry
Chemistry and Materials Science
Chi-square test
Correlation coefficients
Drying
Empirical analysis
Fixed beds
Inorganic Chemistry
Mathematical models
Measurement Science and Instrumentation
Parameters
Physical Chemistry
Polymer Sciences
Statistical analysis
Thickness
title Experimental investigation and thin-layer modelling of cassava slice drying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20and%20thin-layer%20modelling%20of%20cassava%20slice%20drying&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Gao,%20Yu&rft.date=2022&rft.volume=147&rft.issue=2&rft.spage=1379&rft.epage=1387&rft.pages=1379-1387&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-020-10401-x&rft_dat=%3Cgale_proqu%3EA689340351%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618931293&rft_id=info:pmid/&rft_galeid=A689340351&rfr_iscdi=true