Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop

•Shape optimization of composite porous vapor chamber was performed.•Discrete adjoint method and polynomial-based approach were used.•The optimized shape effectively reduced the maximum pressure drop.•More scientific and objective methods may be provided for wick shape design. Composite porous vapor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2022-01, Vol.201, p.117735, Article 117735
Hauptverfasser: Xu, Zhi-Jia, Luo, Man-Si, Wang, Qing-Hui, Zhao, Hao, Wang, Ying-Jun, Deng, Da-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 117735
container_title Applied thermal engineering
container_volume 201
creator Xu, Zhi-Jia
Luo, Man-Si
Wang, Qing-Hui
Zhao, Hao
Wang, Ying-Jun
Deng, Da-Xiang
description •Shape optimization of composite porous vapor chamber was performed.•Discrete adjoint method and polynomial-based approach were used.•The optimized shape effectively reduced the maximum pressure drop.•More scientific and objective methods may be provided for wick shape design. Composite porous vapor chamber (CPVC) with uniform radial grooves is a recently developed vapor chamber, exhibiting good temperature uniformity and excellent stability under high heat flux of 280 W/cm2 with the thermal resistance less than 0.15 °C/W. However, the maximum pressure drop in CPVC due to liquid flow is prone to exceed the limits of capillary pressure, and the shape design of the wicks lacks scientific and objective enough criteria. This paper proposes a shape optimization method to optimize the shape of the evaporator wick in CPVC, based on the study on the minimization of the maximum pressure drop. In this method, the discrete adjoint method is utilized to efficiently analyze the sensitivities and find the most rapid descendant directions for the minima problem. The shape of the evaporator wick is updated by the polynomial-based approach based on the sensitivity information. Results indicate that the bottom contours of the wick blocks’ surfaces surrounding the circular cavity contribute the highest sensitivities. Consequently, the mesh deformations near the contours change the shape of the lateral surfaces of wick blocks from rectangular to concave trapezoidal in both Cylindrical and Cartesian coordinate systems. This reduces the maximum velocities and flow resistance in CPVC, due to the smoother structural transition from the condenser wick to the evaporator wick, thus reducing the maximum pressure drop by about 18.5% and 23.3% in Cartesian and Cylindrical coordinate systems, respectively. The proposed method may pave a more objective and scientific alternative to design the shape of the wicks in CPVC.
doi_str_mv 10.1016/j.applthermaleng.2021.117735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618808450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431121011595</els_id><sourcerecordid>2618808450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e5e5b523148286a36313bb00de02e44a448eca6798d4c971533ff350a632118f3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhCMEEuXxHyzBNcUb24mLuCDES0LiAJwt19m0rurY2E55HPjtBJULN047h5lvd6coToFOgUJ9tprqENZ5idHpNfaLaUUrmAI0DRM7xQRkw0pR03p31EzMSs4A9ouDlFaUQiUbPim-npY6IPEhW2c_dba-J74jxrvgk81Igo9-SGSjR0HMUrs5RvJm85JE3Vq9Jovo_QbTObkkKQ_tBxkJ40nE2f4P0ul36wZHQsSUhoikjT4cFXudXic8_p2HxcvN9fPVXfnweHt_dflQGiZkLlGgmIuKAZeVrDWrGbD5nNIWaYWca84lGl03M9lyM2tAMNZ1TFBdswpAduywONlyQ_SvA6asVn6I_bhSVTVISSUXdHRdbF0m-pQidipE63T8UEDVT-Nqpf42rn4aV9vGx_jNNo7jJxuLUSVjsTfY2ogmq9bb_4G-AekalHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618808450</pqid></control><display><type>article</type><title>Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Zhi-Jia ; Luo, Man-Si ; Wang, Qing-Hui ; Zhao, Hao ; Wang, Ying-Jun ; Deng, Da-Xiang</creator><creatorcontrib>Xu, Zhi-Jia ; Luo, Man-Si ; Wang, Qing-Hui ; Zhao, Hao ; Wang, Ying-Jun ; Deng, Da-Xiang</creatorcontrib><description>•Shape optimization of composite porous vapor chamber was performed.•Discrete adjoint method and polynomial-based approach were used.•The optimized shape effectively reduced the maximum pressure drop.•More scientific and objective methods may be provided for wick shape design. Composite porous vapor chamber (CPVC) with uniform radial grooves is a recently developed vapor chamber, exhibiting good temperature uniformity and excellent stability under high heat flux of 280 W/cm2 with the thermal resistance less than 0.15 °C/W. However, the maximum pressure drop in CPVC due to liquid flow is prone to exceed the limits of capillary pressure, and the shape design of the wicks lacks scientific and objective enough criteria. This paper proposes a shape optimization method to optimize the shape of the evaporator wick in CPVC, based on the study on the minimization of the maximum pressure drop. In this method, the discrete adjoint method is utilized to efficiently analyze the sensitivities and find the most rapid descendant directions for the minima problem. The shape of the evaporator wick is updated by the polynomial-based approach based on the sensitivity information. Results indicate that the bottom contours of the wick blocks’ surfaces surrounding the circular cavity contribute the highest sensitivities. Consequently, the mesh deformations near the contours change the shape of the lateral surfaces of wick blocks from rectangular to concave trapezoidal in both Cylindrical and Cartesian coordinate systems. This reduces the maximum velocities and flow resistance in CPVC, due to the smoother structural transition from the condenser wick to the evaporator wick, thus reducing the maximum pressure drop by about 18.5% and 23.3% in Cartesian and Cylindrical coordinate systems, respectively. The proposed method may pave a more objective and scientific alternative to design the shape of the wicks in CPVC.</description><identifier>ISSN: 1359-4311</identifier><identifier>EISSN: 1873-5606</identifier><identifier>DOI: 10.1016/j.applthermaleng.2021.117735</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adjoint method ; Capillary pressure ; Cartesian coordinates ; Chambers ; Composite wick ; Contours ; Cylindrical coordinates ; Evaporation ; Evaporators ; Flow resistance ; Grooves ; Heat flux ; Heat resistance ; Heat transfer ; Liquid flow ; Optimization ; Polynomials ; Pressure drop ; Sensitivity analysis ; Shape optimization ; Thermal resistance ; Vapor chamber ; Vapors ; Wicks</subject><ispartof>Applied thermal engineering, 2022-01, Vol.201, p.117735, Article 117735</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 25, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e5e5b523148286a36313bb00de02e44a448eca6798d4c971533ff350a632118f3</citedby><cites>FETCH-LOGICAL-c358t-e5e5b523148286a36313bb00de02e44a448eca6798d4c971533ff350a632118f3</cites><orcidid>0000-0002-9183-6924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.applthermaleng.2021.117735$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Xu, Zhi-Jia</creatorcontrib><creatorcontrib>Luo, Man-Si</creatorcontrib><creatorcontrib>Wang, Qing-Hui</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Wang, Ying-Jun</creatorcontrib><creatorcontrib>Deng, Da-Xiang</creatorcontrib><title>Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop</title><title>Applied thermal engineering</title><description>•Shape optimization of composite porous vapor chamber was performed.•Discrete adjoint method and polynomial-based approach were used.•The optimized shape effectively reduced the maximum pressure drop.•More scientific and objective methods may be provided for wick shape design. Composite porous vapor chamber (CPVC) with uniform radial grooves is a recently developed vapor chamber, exhibiting good temperature uniformity and excellent stability under high heat flux of 280 W/cm2 with the thermal resistance less than 0.15 °C/W. However, the maximum pressure drop in CPVC due to liquid flow is prone to exceed the limits of capillary pressure, and the shape design of the wicks lacks scientific and objective enough criteria. This paper proposes a shape optimization method to optimize the shape of the evaporator wick in CPVC, based on the study on the minimization of the maximum pressure drop. In this method, the discrete adjoint method is utilized to efficiently analyze the sensitivities and find the most rapid descendant directions for the minima problem. The shape of the evaporator wick is updated by the polynomial-based approach based on the sensitivity information. Results indicate that the bottom contours of the wick blocks’ surfaces surrounding the circular cavity contribute the highest sensitivities. Consequently, the mesh deformations near the contours change the shape of the lateral surfaces of wick blocks from rectangular to concave trapezoidal in both Cylindrical and Cartesian coordinate systems. This reduces the maximum velocities and flow resistance in CPVC, due to the smoother structural transition from the condenser wick to the evaporator wick, thus reducing the maximum pressure drop by about 18.5% and 23.3% in Cartesian and Cylindrical coordinate systems, respectively. The proposed method may pave a more objective and scientific alternative to design the shape of the wicks in CPVC.</description><subject>Adjoint method</subject><subject>Capillary pressure</subject><subject>Cartesian coordinates</subject><subject>Chambers</subject><subject>Composite wick</subject><subject>Contours</subject><subject>Cylindrical coordinates</subject><subject>Evaporation</subject><subject>Evaporators</subject><subject>Flow resistance</subject><subject>Grooves</subject><subject>Heat flux</subject><subject>Heat resistance</subject><subject>Heat transfer</subject><subject>Liquid flow</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Pressure drop</subject><subject>Sensitivity analysis</subject><subject>Shape optimization</subject><subject>Thermal resistance</subject><subject>Vapor chamber</subject><subject>Vapors</subject><subject>Wicks</subject><issn>1359-4311</issn><issn>1873-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhCMEEuXxHyzBNcUb24mLuCDES0LiAJwt19m0rurY2E55HPjtBJULN047h5lvd6coToFOgUJ9tprqENZ5idHpNfaLaUUrmAI0DRM7xQRkw0pR03p31EzMSs4A9ouDlFaUQiUbPim-npY6IPEhW2c_dba-J74jxrvgk81Igo9-SGSjR0HMUrs5RvJm85JE3Vq9Jovo_QbTObkkKQ_tBxkJ40nE2f4P0ul36wZHQsSUhoikjT4cFXudXic8_p2HxcvN9fPVXfnweHt_dflQGiZkLlGgmIuKAZeVrDWrGbD5nNIWaYWca84lGl03M9lyM2tAMNZ1TFBdswpAduywONlyQ_SvA6asVn6I_bhSVTVISSUXdHRdbF0m-pQidipE63T8UEDVT-Nqpf42rn4aV9vGx_jNNo7jJxuLUSVjsTfY2ogmq9bb_4G-AekalHQ</recordid><startdate>20220125</startdate><enddate>20220125</enddate><creator>Xu, Zhi-Jia</creator><creator>Luo, Man-Si</creator><creator>Wang, Qing-Hui</creator><creator>Zhao, Hao</creator><creator>Wang, Ying-Jun</creator><creator>Deng, Da-Xiang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9183-6924</orcidid></search><sort><creationdate>20220125</creationdate><title>Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop</title><author>Xu, Zhi-Jia ; Luo, Man-Si ; Wang, Qing-Hui ; Zhao, Hao ; Wang, Ying-Jun ; Deng, Da-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e5e5b523148286a36313bb00de02e44a448eca6798d4c971533ff350a632118f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adjoint method</topic><topic>Capillary pressure</topic><topic>Cartesian coordinates</topic><topic>Chambers</topic><topic>Composite wick</topic><topic>Contours</topic><topic>Cylindrical coordinates</topic><topic>Evaporation</topic><topic>Evaporators</topic><topic>Flow resistance</topic><topic>Grooves</topic><topic>Heat flux</topic><topic>Heat resistance</topic><topic>Heat transfer</topic><topic>Liquid flow</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Pressure drop</topic><topic>Sensitivity analysis</topic><topic>Shape optimization</topic><topic>Thermal resistance</topic><topic>Vapor chamber</topic><topic>Vapors</topic><topic>Wicks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zhi-Jia</creatorcontrib><creatorcontrib>Luo, Man-Si</creatorcontrib><creatorcontrib>Wang, Qing-Hui</creatorcontrib><creatorcontrib>Zhao, Hao</creatorcontrib><creatorcontrib>Wang, Ying-Jun</creatorcontrib><creatorcontrib>Deng, Da-Xiang</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zhi-Jia</au><au>Luo, Man-Si</au><au>Wang, Qing-Hui</au><au>Zhao, Hao</au><au>Wang, Ying-Jun</au><au>Deng, Da-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop</atitle><jtitle>Applied thermal engineering</jtitle><date>2022-01-25</date><risdate>2022</risdate><volume>201</volume><spage>117735</spage><pages>117735-</pages><artnum>117735</artnum><issn>1359-4311</issn><eissn>1873-5606</eissn><abstract>•Shape optimization of composite porous vapor chamber was performed.•Discrete adjoint method and polynomial-based approach were used.•The optimized shape effectively reduced the maximum pressure drop.•More scientific and objective methods may be provided for wick shape design. Composite porous vapor chamber (CPVC) with uniform radial grooves is a recently developed vapor chamber, exhibiting good temperature uniformity and excellent stability under high heat flux of 280 W/cm2 with the thermal resistance less than 0.15 °C/W. However, the maximum pressure drop in CPVC due to liquid flow is prone to exceed the limits of capillary pressure, and the shape design of the wicks lacks scientific and objective enough criteria. This paper proposes a shape optimization method to optimize the shape of the evaporator wick in CPVC, based on the study on the minimization of the maximum pressure drop. In this method, the discrete adjoint method is utilized to efficiently analyze the sensitivities and find the most rapid descendant directions for the minima problem. The shape of the evaporator wick is updated by the polynomial-based approach based on the sensitivity information. Results indicate that the bottom contours of the wick blocks’ surfaces surrounding the circular cavity contribute the highest sensitivities. Consequently, the mesh deformations near the contours change the shape of the lateral surfaces of wick blocks from rectangular to concave trapezoidal in both Cylindrical and Cartesian coordinate systems. This reduces the maximum velocities and flow resistance in CPVC, due to the smoother structural transition from the condenser wick to the evaporator wick, thus reducing the maximum pressure drop by about 18.5% and 23.3% in Cartesian and Cylindrical coordinate systems, respectively. The proposed method may pave a more objective and scientific alternative to design the shape of the wicks in CPVC.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2021.117735</doi><orcidid>https://orcid.org/0000-0002-9183-6924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2022-01, Vol.201, p.117735, Article 117735
issn 1359-4311
1873-5606
language eng
recordid cdi_proquest_journals_2618808450
source ScienceDirect Journals (5 years ago - present)
subjects Adjoint method
Capillary pressure
Cartesian coordinates
Chambers
Composite wick
Contours
Cylindrical coordinates
Evaporation
Evaporators
Flow resistance
Grooves
Heat flux
Heat resistance
Heat transfer
Liquid flow
Optimization
Polynomials
Pressure drop
Sensitivity analysis
Shape optimization
Thermal resistance
Vapor chamber
Vapors
Wicks
title Shape optimization of composite porous vapor chamber with radial grooves: A study on the minimization of maximum pressure drop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A19%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20optimization%20of%20composite%20porous%20vapor%20chamber%20with%20radial%20grooves:%20A%20study%20on%20the%20minimization%20of%20maximum%20pressure%20drop&rft.jtitle=Applied%20thermal%20engineering&rft.au=Xu,%20Zhi-Jia&rft.date=2022-01-25&rft.volume=201&rft.spage=117735&rft.pages=117735-&rft.artnum=117735&rft.issn=1359-4311&rft.eissn=1873-5606&rft_id=info:doi/10.1016/j.applthermaleng.2021.117735&rft_dat=%3Cproquest_cross%3E2618808450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618808450&rft_id=info:pmid/&rft_els_id=S1359431121011595&rfr_iscdi=true