An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves
Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen...
Gespeichert in:
Veröffentlicht in: | Astrophysics and space science 2022, Vol.367 (1), Article 9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Astrophysics and space science |
container_volume | 367 |
creator | Tripathi, Arvind K. Singhal, Rajendra P. |
description | Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0
∘
, 1
∘
, 2
∘
and 2.5
∘
). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50
∘
pitch angle, higher than 1000 eV energies and also for 2
∘
and 2.5
∘
latitudes. Diffusion coefficients at 2
∘
and 2.5
∘
latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed. |
doi_str_mv | 10.1007/s10509-021-04027-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618749388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618749388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pkN5vdHEvxCwpeFHoLaTJpU7abNtmq_feuXaE3T_PB8w7MQ8gtg3sGUD0kBiXIDHKWAYe8yuCMjFhZ5ZnkYn5ORgDAM8FhfkmuUlr3oxSyGpHdpKX43WFr0VLd6ubQeaMbugkWGxocxQZNF0NLt74zqx5ZNkitd26ffL81AZ3zxmPbJepCPPHmYJpw7FY6bkLrDf3Sn5iuyYXTTcKbvzomH0-P79OXbPb2_DqdzDKTA3SZdZVExhlYNKw0i8JWpYVC5KVGVqATzJWGL2pX8FoXpaxLKZxFobUTLpe8GJO74e42ht0eU6fWYR_7D5PKBasrLou67ql8oEwMKUV0ahv9RseDYqB-1apBrerVqqNaBX2oGEKph9slxtPpf1I_yER-mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618749388</pqid></control><display><type>article</type><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><source>SpringerNature Journals</source><creator>Tripathi, Arvind K. ; Singhal, Rajendra P.</creator><creatorcontrib>Tripathi, Arvind K. ; Singhal, Rajendra P.</creatorcontrib><description>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0
∘
, 1
∘
, 2
∘
and 2.5
∘
). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50
∘
pitch angle, higher than 1000 eV energies and also for 2
∘
and 2.5
∘
latitudes. Diffusion coefficients at 2
∘
and 2.5
∘
latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-021-04027-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Coefficients ; Cosmology ; Diffusion ; Diffusion coefficient ; Electric fields ; Electron energy ; Electron plasma ; Equator ; Exact solutions ; Ganymede ; Jupiter ; Latitude ; Letter ; Magnetic equator ; Magnetic fields ; Mathematical models ; Observations and Techniques ; Physics ; Physics and Astronomy ; Pitch (inclination) ; Plasma frequencies ; Resonant interactions ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Astrophysics and space science, 2022, Vol.367 (1), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</cites><orcidid>0000-0003-1641-1333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-021-04027-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-021-04027-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tripathi, Arvind K.</creatorcontrib><creatorcontrib>Singhal, Rajendra P.</creatorcontrib><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0
∘
, 1
∘
, 2
∘
and 2.5
∘
). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50
∘
pitch angle, higher than 1000 eV energies and also for 2
∘
and 2.5
∘
latitudes. Diffusion coefficients at 2
∘
and 2.5
∘
latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Coefficients</subject><subject>Cosmology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electric fields</subject><subject>Electron energy</subject><subject>Electron plasma</subject><subject>Equator</subject><subject>Exact solutions</subject><subject>Ganymede</subject><subject>Jupiter</subject><subject>Latitude</subject><subject>Letter</subject><subject>Magnetic equator</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pitch (inclination)</subject><subject>Plasma frequencies</subject><subject>Resonant interactions</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pkN5vdHEvxCwpeFHoLaTJpU7abNtmq_feuXaE3T_PB8w7MQ8gtg3sGUD0kBiXIDHKWAYe8yuCMjFhZ5ZnkYn5ORgDAM8FhfkmuUlr3oxSyGpHdpKX43WFr0VLd6ubQeaMbugkWGxocxQZNF0NLt74zqx5ZNkitd26ffL81AZ3zxmPbJepCPPHmYJpw7FY6bkLrDf3Sn5iuyYXTTcKbvzomH0-P79OXbPb2_DqdzDKTA3SZdZVExhlYNKw0i8JWpYVC5KVGVqATzJWGL2pX8FoXpaxLKZxFobUTLpe8GJO74e42ht0eU6fWYR_7D5PKBasrLou67ql8oEwMKUV0ahv9RseDYqB-1apBrerVqqNaBX2oGEKph9slxtPpf1I_yER-mg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Tripathi, Arvind K.</creator><creator>Singhal, Rajendra P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1641-1333</orcidid></search><sort><creationdate>2022</creationdate><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><author>Tripathi, Arvind K. ; Singhal, Rajendra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Coefficients</topic><topic>Cosmology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electric fields</topic><topic>Electron energy</topic><topic>Electron plasma</topic><topic>Equator</topic><topic>Exact solutions</topic><topic>Ganymede</topic><topic>Jupiter</topic><topic>Latitude</topic><topic>Letter</topic><topic>Magnetic equator</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pitch (inclination)</topic><topic>Plasma frequencies</topic><topic>Resonant interactions</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, Arvind K.</creatorcontrib><creatorcontrib>Singhal, Rajendra P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, Arvind K.</au><au>Singhal, Rajendra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2022</date><risdate>2022</risdate><volume>367</volume><issue>1</issue><artnum>9</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0
∘
, 1
∘
, 2
∘
and 2.5
∘
). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50
∘
pitch angle, higher than 1000 eV energies and also for 2
∘
and 2.5
∘
latitudes. Diffusion coefficients at 2
∘
and 2.5
∘
latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-021-04027-0</doi><orcidid>https://orcid.org/0000-0003-1641-1333</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-640X |
ispartof | Astrophysics and space science, 2022, Vol.367 (1), Article 9 |
issn | 0004-640X 1572-946X |
language | eng |
recordid | cdi_proquest_journals_2618749388 |
source | SpringerNature Journals |
subjects | Astrobiology Astronomy Astrophysics Astrophysics and Astroparticles Coefficients Cosmology Diffusion Diffusion coefficient Electric fields Electron energy Electron plasma Equator Exact solutions Ganymede Jupiter Latitude Letter Magnetic equator Magnetic fields Mathematical models Observations and Techniques Physics Physics and Astronomy Pitch (inclination) Plasma frequencies Resonant interactions Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics |
title | An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20analytical%20model%20of%20electron%20pitch%20angle%20diffusion%20coefficients%20for%20electron%20cyclotron%20harmonic%20waves&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Tripathi,%20Arvind%20K.&rft.date=2022&rft.volume=367&rft.issue=1&rft.artnum=9&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-021-04027-0&rft_dat=%3Cproquest_cross%3E2618749388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618749388&rft_id=info:pmid/&rfr_iscdi=true |