An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves

Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysics and space science 2022, Vol.367 (1), Article 9
Hauptverfasser: Tripathi, Arvind K., Singhal, Rajendra P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Astrophysics and space science
container_volume 367
creator Tripathi, Arvind K.
Singhal, Rajendra P.
description Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0 ∘ , 1 ∘ , 2 ∘ and 2.5 ∘ ). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50 ∘ pitch angle, higher than 1000 eV energies and also for 2 ∘ and 2.5 ∘ latitudes. Diffusion coefficients at 2 ∘ and 2.5 ∘ latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.
doi_str_mv 10.1007/s10509-021-04027-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618749388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618749388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pkN5vdHEvxCwpeFHoLaTJpU7abNtmq_feuXaE3T_PB8w7MQ8gtg3sGUD0kBiXIDHKWAYe8yuCMjFhZ5ZnkYn5ORgDAM8FhfkmuUlr3oxSyGpHdpKX43WFr0VLd6ubQeaMbugkWGxocxQZNF0NLt74zqx5ZNkitd26ffL81AZ3zxmPbJepCPPHmYJpw7FY6bkLrDf3Sn5iuyYXTTcKbvzomH0-P79OXbPb2_DqdzDKTA3SZdZVExhlYNKw0i8JWpYVC5KVGVqATzJWGL2pX8FoXpaxLKZxFobUTLpe8GJO74e42ht0eU6fWYR_7D5PKBasrLou67ql8oEwMKUV0ahv9RseDYqB-1apBrerVqqNaBX2oGEKph9slxtPpf1I_yER-mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618749388</pqid></control><display><type>article</type><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><source>SpringerNature Journals</source><creator>Tripathi, Arvind K. ; Singhal, Rajendra P.</creator><creatorcontrib>Tripathi, Arvind K. ; Singhal, Rajendra P.</creatorcontrib><description>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0 ∘ , 1 ∘ , 2 ∘ and 2.5 ∘ ). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50 ∘ pitch angle, higher than 1000 eV energies and also for 2 ∘ and 2.5 ∘ latitudes. Diffusion coefficients at 2 ∘ and 2.5 ∘ latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-021-04027-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Coefficients ; Cosmology ; Diffusion ; Diffusion coefficient ; Electric fields ; Electron energy ; Electron plasma ; Equator ; Exact solutions ; Ganymede ; Jupiter ; Latitude ; Letter ; Magnetic equator ; Magnetic fields ; Mathematical models ; Observations and Techniques ; Physics ; Physics and Astronomy ; Pitch (inclination) ; Plasma frequencies ; Resonant interactions ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>Astrophysics and space science, 2022, Vol.367 (1), Article 9</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</cites><orcidid>0000-0003-1641-1333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10509-021-04027-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10509-021-04027-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tripathi, Arvind K.</creatorcontrib><creatorcontrib>Singhal, Rajendra P.</creatorcontrib><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0 ∘ , 1 ∘ , 2 ∘ and 2.5 ∘ ). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50 ∘ pitch angle, higher than 1000 eV energies and also for 2 ∘ and 2.5 ∘ latitudes. Diffusion coefficients at 2 ∘ and 2.5 ∘ latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</description><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Coefficients</subject><subject>Cosmology</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Electric fields</subject><subject>Electron energy</subject><subject>Electron plasma</subject><subject>Equator</subject><subject>Exact solutions</subject><subject>Ganymede</subject><subject>Jupiter</subject><subject>Latitude</subject><subject>Letter</subject><subject>Magnetic equator</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pitch (inclination)</subject><subject>Plasma frequencies</subject><subject>Resonant interactions</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pkN5vdHEvxCwpeFHoLaTJpU7abNtmq_feuXaE3T_PB8w7MQ8gtg3sGUD0kBiXIDHKWAYe8yuCMjFhZ5ZnkYn5ORgDAM8FhfkmuUlr3oxSyGpHdpKX43WFr0VLd6ubQeaMbugkWGxocxQZNF0NLt74zqx5ZNkitd26ffL81AZ3zxmPbJepCPPHmYJpw7FY6bkLrDf3Sn5iuyYXTTcKbvzomH0-P79OXbPb2_DqdzDKTA3SZdZVExhlYNKw0i8JWpYVC5KVGVqATzJWGL2pX8FoXpaxLKZxFobUTLpe8GJO74e42ht0eU6fWYR_7D5PKBasrLou67ql8oEwMKUV0ahv9RseDYqB-1apBrerVqqNaBX2oGEKph9slxtPpf1I_yER-mg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Tripathi, Arvind K.</creator><creator>Singhal, Rajendra P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1641-1333</orcidid></search><sort><creationdate>2022</creationdate><title>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</title><author>Tripathi, Arvind K. ; Singhal, Rajendra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-df79e1410dec15cb3d75d03625ae13ef61f5c4b8f348a3598596fde6aaf6f2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Coefficients</topic><topic>Cosmology</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Electric fields</topic><topic>Electron energy</topic><topic>Electron plasma</topic><topic>Equator</topic><topic>Exact solutions</topic><topic>Ganymede</topic><topic>Jupiter</topic><topic>Latitude</topic><topic>Letter</topic><topic>Magnetic equator</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pitch (inclination)</topic><topic>Plasma frequencies</topic><topic>Resonant interactions</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, Arvind K.</creatorcontrib><creatorcontrib>Singhal, Rajendra P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, Arvind K.</au><au>Singhal, Rajendra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2022</date><risdate>2022</risdate><volume>367</volume><issue>1</issue><artnum>9</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>Electron pitch angle diffusion coefficients for resonant interaction with electrostatic electron cyclotron harmonic (ECH) waves have been calculated. Calculations have been performed at five values of the ratio of electron plasma frequency to gyro-frequency (2.0, 4.77, 8.0, 12.0, and 18.0), thirteen values of electron energy between 1 eV and 10 keV, and four magnetic latitudes (0 ∘ , 1 ∘ , 2 ∘ and 2.5 ∘ ). A dipolar magnetic field model is considered. Numerical coefficients have been fitted with a simple analytical expression. Differences between analytical and numerical coefficients are generally within a factor of 2 or 3 in magnitude. However, larger differences are noticed above 50 ∘ pitch angle, higher than 1000 eV energies and also for 2 ∘ and 2.5 ∘ latitudes. Diffusion coefficients at 2 ∘ and 2.5 ∘ latitudes are found one to two orders of magnitude smaller in comparison with coefficients at the magnetic equator. Analytical expressions may be used to calculate local or bounce-averaged diffusion coefficients for arbitrary pitch angle, electron energy, ratio of electron plasma to gyro-frequency and amplitude of ECH wave’s electric field. Bounce averaged diffusion coefficients have been calculated using the analytical expressions. The results are compared with other earlier works. Further, analytical expressions are quite general and can also be used for planets other than Earth, e.g., Jupiter and its satellite–Ganymede, and Saturn where ECH waves have been observed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-021-04027-0</doi><orcidid>https://orcid.org/0000-0003-1641-1333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2022, Vol.367 (1), Article 9
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_journals_2618749388
source SpringerNature Journals
subjects Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Coefficients
Cosmology
Diffusion
Diffusion coefficient
Electric fields
Electron energy
Electron plasma
Equator
Exact solutions
Ganymede
Jupiter
Latitude
Letter
Magnetic equator
Magnetic fields
Mathematical models
Observations and Techniques
Physics
Physics and Astronomy
Pitch (inclination)
Plasma frequencies
Resonant interactions
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title An extended analytical model of electron pitch angle diffusion coefficients for electron cyclotron harmonic waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20analytical%20model%20of%20electron%20pitch%20angle%20diffusion%20coefficients%20for%20electron%20cyclotron%20harmonic%20waves&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Tripathi,%20Arvind%20K.&rft.date=2022&rft.volume=367&rft.issue=1&rft.artnum=9&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-021-04027-0&rft_dat=%3Cproquest_cross%3E2618749388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618749388&rft_id=info:pmid/&rfr_iscdi=true