Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides

Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well kn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-01, Vol.131 (2)
1. Verfasser: Lyons, John L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 131
creator Lyons, John L.
description Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides ( Ga 2 O 3, Al 2 O 3, ZnGa 2 O 4, MgGa 2 O 4, LiGaO 2, and GeO 2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving p-type conductivity in any of these oxides is unlikely, with the possible exception of GeO 2.
doi_str_mv 10.1063/5.0077030
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2618735563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618735563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOtlsks1RilWh4EE9h2w20S3rJiZbtW9vpEUPgqdhmI9_4EfolMCMAKeXbAYgBFDYQxMCtSwEY7CPJgAlKWop5CE6SmkFQEhN5QQtHmzvijHqEGyLX3xvE9ZDi4PvdfRDZ7A2xobRx4S7Aa_7TD-61hZNVs86YP-Zt3SMDpzukz3ZzSl6Wlw_zm-L5f3N3fxqWRgq6VjIylhutBMAtCm5Yw030jlBXW045Asraet0W5JWVtIyXpmGWKqNqGxtuaRTdLbNDdG_rW0a1cqv45BfqpKTWlDGOM3qfKtM9ClF61SI3auOG0VAfdekmNrVlO3F1ibTjXrs_PCD3338hSq07j_8N_kLApJ2Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618735563</pqid></control><display><type>article</type><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lyons, John L.</creator><creatorcontrib>Lyons, John L.</creatorcontrib><description>Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides ( Ga 2 O 3, Al 2 O 3, ZnGa 2 O 4, MgGa 2 O 4, LiGaO 2, and GeO 2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving p-type conductivity in any of these oxides is unlikely, with the possible exception of GeO 2.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0077030</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Gallium oxides ; Germanium oxides ; Hole conductivity ; Impurities ; Wide bandgap semiconductors</subject><ispartof>Journal of applied physics, 2022-01, Vol.131 (2)</ispartof><rights>Public Domain</rights><rights>2022Public DomainPublished by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</citedby><cites>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</cites><orcidid>0000-0001-8023-3055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0077030$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Lyons, John L.</creatorcontrib><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><title>Journal of applied physics</title><description>Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides ( Ga 2 O 3, Al 2 O 3, ZnGa 2 O 4, MgGa 2 O 4, LiGaO 2, and GeO 2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving p-type conductivity in any of these oxides is unlikely, with the possible exception of GeO 2.</description><subject>Aluminum oxide</subject><subject>Gallium oxides</subject><subject>Germanium oxides</subject><subject>Hole conductivity</subject><subject>Impurities</subject><subject>Wide bandgap semiconductors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOtlsks1RilWh4EE9h2w20S3rJiZbtW9vpEUPgqdhmI9_4EfolMCMAKeXbAYgBFDYQxMCtSwEY7CPJgAlKWop5CE6SmkFQEhN5QQtHmzvijHqEGyLX3xvE9ZDi4PvdfRDZ7A2xobRx4S7Aa_7TD-61hZNVs86YP-Zt3SMDpzukz3ZzSl6Wlw_zm-L5f3N3fxqWRgq6VjIylhutBMAtCm5Yw030jlBXW045Asraet0W5JWVtIyXpmGWKqNqGxtuaRTdLbNDdG_rW0a1cqv45BfqpKTWlDGOM3qfKtM9ClF61SI3auOG0VAfdekmNrVlO3F1ibTjXrs_PCD3338hSq07j_8N_kLApJ2Ow</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Lyons, John L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid></search><sort><creationdate>20220114</creationdate><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><author>Lyons, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Gallium oxides</topic><topic>Germanium oxides</topic><topic>Hole conductivity</topic><topic>Impurities</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, John L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</atitle><jtitle>Journal of applied physics</jtitle><date>2022-01-14</date><risdate>2022</risdate><volume>131</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides ( Ga 2 O 3, Al 2 O 3, ZnGa 2 O 4, MgGa 2 O 4, LiGaO 2, and GeO 2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving p-type conductivity in any of these oxides is unlikely, with the possible exception of GeO 2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0077030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-01, Vol.131 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2618735563
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum oxide
Gallium oxides
Germanium oxides
Hole conductivity
Impurities
Wide bandgap semiconductors
title Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-trapped%20holes%20and%20polaronic%20acceptors%20in%20ultrawide-bandgap%20oxides&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lyons,%20John%20L.&rft.date=2022-01-14&rft.volume=131&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0077030&rft_dat=%3Cproquest_scita%3E2618735563%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618735563&rft_id=info:pmid/&rfr_iscdi=true