Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides
Although Ga 2 O 3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to Ga 2 O 3, but their propensity for hole conductivity is less well kn...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-01, Vol.131 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 131 |
creator | Lyons, John L. |
description | Although
Ga
2
O
3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be
p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to
Ga
2
O
3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides (
Ga
2
O
3,
Al
2
O
3,
ZnGa
2
O
4,
MgGa
2
O
4,
LiGaO
2, and
GeO
2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving
p-type conductivity in any of these oxides is unlikely, with the possible exception of
GeO
2. |
doi_str_mv | 10.1063/5.0077030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2618735563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618735563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</originalsourceid><addsrcrecordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOtlsks1RilWh4EE9h2w20S3rJiZbtW9vpEUPgqdhmI9_4EfolMCMAKeXbAYgBFDYQxMCtSwEY7CPJgAlKWop5CE6SmkFQEhN5QQtHmzvijHqEGyLX3xvE9ZDi4PvdfRDZ7A2xobRx4S7Aa_7TD-61hZNVs86YP-Zt3SMDpzukz3ZzSl6Wlw_zm-L5f3N3fxqWRgq6VjIylhutBMAtCm5Yw030jlBXW045Asraet0W5JWVtIyXpmGWKqNqGxtuaRTdLbNDdG_rW0a1cqv45BfqpKTWlDGOM3qfKtM9ClF61SI3auOG0VAfdekmNrVlO3F1ibTjXrs_PCD3338hSq07j_8N_kLApJ2Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618735563</pqid></control><display><type>article</type><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Lyons, John L.</creator><creatorcontrib>Lyons, John L.</creatorcontrib><description>Although
Ga
2
O
3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be
p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to
Ga
2
O
3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides (
Ga
2
O
3,
Al
2
O
3,
ZnGa
2
O
4,
MgGa
2
O
4,
LiGaO
2, and
GeO
2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving
p-type conductivity in any of these oxides is unlikely, with the possible exception of
GeO
2.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0077030</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Gallium oxides ; Germanium oxides ; Hole conductivity ; Impurities ; Wide bandgap semiconductors</subject><ispartof>Journal of applied physics, 2022-01, Vol.131 (2)</ispartof><rights>Public Domain</rights><rights>2022Public DomainPublished by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</citedby><cites>FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</cites><orcidid>0000-0001-8023-3055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0077030$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Lyons, John L.</creatorcontrib><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><title>Journal of applied physics</title><description>Although
Ga
2
O
3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be
p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to
Ga
2
O
3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides (
Ga
2
O
3,
Al
2
O
3,
ZnGa
2
O
4,
MgGa
2
O
4,
LiGaO
2, and
GeO
2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving
p-type conductivity in any of these oxides is unlikely, with the possible exception of
GeO
2.</description><subject>Aluminum oxide</subject><subject>Gallium oxides</subject><subject>Germanium oxides</subject><subject>Hole conductivity</subject><subject>Impurities</subject><subject>Wide bandgap semiconductors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MFKAzEQBuAgCtbqwTcIeFLYOtlsks1RilWh4EE9h2w20S3rJiZbtW9vpEUPgqdhmI9_4EfolMCMAKeXbAYgBFDYQxMCtSwEY7CPJgAlKWop5CE6SmkFQEhN5QQtHmzvijHqEGyLX3xvE9ZDi4PvdfRDZ7A2xobRx4S7Aa_7TD-61hZNVs86YP-Zt3SMDpzukz3ZzSl6Wlw_zm-L5f3N3fxqWRgq6VjIylhutBMAtCm5Yw030jlBXW045Asraet0W5JWVtIyXpmGWKqNqGxtuaRTdLbNDdG_rW0a1cqv45BfqpKTWlDGOM3qfKtM9ClF61SI3auOG0VAfdekmNrVlO3F1ibTjXrs_PCD3338hSq07j_8N_kLApJ2Ow</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Lyons, John L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid></search><sort><creationdate>20220114</creationdate><title>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</title><author>Lyons, John L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-94ce6caf7003b26f5b6c9ff73f8c606ca523dfad21d949e564cb1e3ac74e8e693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Gallium oxides</topic><topic>Germanium oxides</topic><topic>Hole conductivity</topic><topic>Impurities</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyons, John L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyons, John L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides</atitle><jtitle>Journal of applied physics</jtitle><date>2022-01-14</date><risdate>2022</risdate><volume>131</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Although
Ga
2
O
3 is widely believed to be one of the most promising ultrawide-bandgap semiconductors, its inability to be
p-type doped hampers its future applications. Other oxides have recently emerged as potential competitors to
Ga
2
O
3, but their propensity for hole conductivity is less well known. Here, the stability of hole polarons is examined in pristine material and in the presence of impurities for a set of ultrawide-bandgap oxides (
Ga
2
O
3,
Al
2
O
3,
ZnGa
2
O
4,
MgGa
2
O
4,
LiGaO
2, and
GeO
2). Holes spontaneously self trap in all oxides investigated here. Acceptor impurities (such as group-I elements, N, and F) further stabilize these trapped holes, leading to large acceptor ionization energies. Hole trapping also leads to characteristic distortions and distinct optical transitions, which may explain some experimentally observed signals. These results indicate that achieving
p-type conductivity in any of these oxides is unlikely, with the possible exception of
GeO
2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0077030</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8023-3055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-01, Vol.131 (2) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2618735563 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum oxide Gallium oxides Germanium oxides Hole conductivity Impurities Wide bandgap semiconductors |
title | Self-trapped holes and polaronic acceptors in ultrawide-bandgap oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T08%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-trapped%20holes%20and%20polaronic%20acceptors%20in%20ultrawide-bandgap%20oxides&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Lyons,%20John%20L.&rft.date=2022-01-14&rft.volume=131&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0077030&rft_dat=%3Cproquest_scita%3E2618735563%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618735563&rft_id=info:pmid/&rfr_iscdi=true |