Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique

An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering 2020-11, Vol.955 (1), p.12021
Hauptverfasser: Nongsiej, Eshanya Tongper, Natarajan, Karthiga @ Shenbagam, Murugesan, Saravanan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12021
container_title IOP conference series. Materials Science and Engineering
container_volume 955
creator Nongsiej, Eshanya Tongper
Natarajan, Karthiga @ Shenbagam
Murugesan, Saravanan
description An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.
doi_str_mv 10.1088/1757-899X/955/1/012021
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2618672617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618672617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQreeFObpG0-LnXOKUwHOsG7kCapZnZNTTpk_nozqhNB8OacA-d9zoEnio4hOIOA0hSSgiSUsaeUFUUKUwARQHAnGmwXu9uZwv3owPsFAJjkORhE5aX25rmJZ21nluZDdMY2sa3ie22ayjqpVTyyjXS60_GFFksfl-t4ohvdGSnqev0NhtydXjlRh9a9W_caz7V8aczbSh9Ge5WovT766sPo8Wo8H10n09nkZnQ-TWSGEEwgURgRJFkJWZEpoiCjChNcEFrmJVNISFwgRnUpSoAwFSrXuJIKCsEwLlU2jE76u62z4a3v-MKuXBNecoQhxSRUElK4T0lnvXe64q0zS-HWHAK-8ck3qvhGGw8-OeS9zwCiHjS2_bn8L3T6B3T7MP4V462qsk8PooWa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618672617</pqid></control><display><type>article</type><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</creator><creatorcontrib>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</creatorcontrib><description>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/955/1/012021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Columns (structural) ; Concentrated loads ; Design optimization ; Limit states ; Live loads ; Neural networks ; Optimization techniques ; Reinforced concrete ; Scientific papers ; Structural members</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-11, Vol.955 (1), p.12021</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</citedby><cites>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/955/1/012021/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Nongsiej, Eshanya Tongper</creatorcontrib><creatorcontrib>Natarajan, Karthiga @ Shenbagam</creatorcontrib><creatorcontrib>Murugesan, Saravanan</creatorcontrib><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</description><subject>Columns (structural)</subject><subject>Concentrated loads</subject><subject>Design optimization</subject><subject>Limit states</subject><subject>Live loads</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Reinforced concrete</subject><subject>Scientific papers</subject><subject>Structural members</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQreeFObpG0-LnXOKUwHOsG7kCapZnZNTTpk_nozqhNB8OacA-d9zoEnio4hOIOA0hSSgiSUsaeUFUUKUwARQHAnGmwXu9uZwv3owPsFAJjkORhE5aX25rmJZ21nluZDdMY2sa3ie22ayjqpVTyyjXS60_GFFksfl-t4ohvdGSnqev0NhtydXjlRh9a9W_caz7V8aczbSh9Ge5WovT766sPo8Wo8H10n09nkZnQ-TWSGEEwgURgRJFkJWZEpoiCjChNcEFrmJVNISFwgRnUpSoAwFSrXuJIKCsEwLlU2jE76u62z4a3v-MKuXBNecoQhxSRUElK4T0lnvXe64q0zS-HWHAK-8ck3qvhGGw8-OeS9zwCiHjS2_bn8L3T6B3T7MP4V462qsk8PooWa</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nongsiej, Eshanya Tongper</creator><creator>Natarajan, Karthiga @ Shenbagam</creator><creator>Murugesan, Saravanan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201101</creationdate><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><author>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Columns (structural)</topic><topic>Concentrated loads</topic><topic>Design optimization</topic><topic>Limit states</topic><topic>Live loads</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Reinforced concrete</topic><topic>Scientific papers</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nongsiej, Eshanya Tongper</creatorcontrib><creatorcontrib>Natarajan, Karthiga @ Shenbagam</creatorcontrib><creatorcontrib>Murugesan, Saravanan</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nongsiej, Eshanya Tongper</au><au>Natarajan, Karthiga @ Shenbagam</au><au>Murugesan, Saravanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>955</volume><issue>1</issue><spage>12021</spage><pages>12021-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/955/1/012021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1757-8981
ispartof IOP conference series. Materials Science and Engineering, 2020-11, Vol.955 (1), p.12021
issn 1757-8981
1757-899X
language eng
recordid cdi_proquest_journals_2618672617
source Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Columns (structural)
Concentrated loads
Design optimization
Limit states
Live loads
Neural networks
Optimization techniques
Reinforced concrete
Scientific papers
Structural members
title Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20Reinforced%20Concrete%20Beams%20by%20Genetically%20Optimized%20Neural%20Network%20Technique&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Nongsiej,%20Eshanya%20Tongper&rft.date=2020-11-01&rft.volume=955&rft.issue=1&rft.spage=12021&rft.pages=12021-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/955/1/012021&rft_dat=%3Cproquest_iop_j%3E2618672617%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618672617&rft_id=info:pmid/&rfr_iscdi=true