Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique
An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loadin...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2020-11, Vol.955 (1), p.12021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12021 |
container_title | IOP conference series. Materials Science and Engineering |
container_volume | 955 |
creator | Nongsiej, Eshanya Tongper Natarajan, Karthiga @ Shenbagam Murugesan, Saravanan |
description | An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated. |
doi_str_mv | 10.1088/1757-899X/955/1/012021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2618672617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618672617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhosoOKd_QQreeFObpG0-LnXOKUwHOsG7kCapZnZNTTpk_nozqhNB8OacA-d9zoEnio4hOIOA0hSSgiSUsaeUFUUKUwARQHAnGmwXu9uZwv3owPsFAJjkORhE5aX25rmJZ21nluZDdMY2sa3ie22ayjqpVTyyjXS60_GFFksfl-t4ohvdGSnqev0NhtydXjlRh9a9W_caz7V8aczbSh9Ge5WovT766sPo8Wo8H10n09nkZnQ-TWSGEEwgURgRJFkJWZEpoiCjChNcEFrmJVNISFwgRnUpSoAwFSrXuJIKCsEwLlU2jE76u62z4a3v-MKuXBNecoQhxSRUElK4T0lnvXe64q0zS-HWHAK-8ck3qvhGGw8-OeS9zwCiHjS2_bn8L3T6B3T7MP4V462qsk8PooWa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618672617</pqid></control><display><type>article</type><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><source>Institute of Physics Open Access Journal Titles</source><source>Institute of Physics IOPscience extra</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</creator><creatorcontrib>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</creatorcontrib><description>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</description><identifier>ISSN: 1757-8981</identifier><identifier>EISSN: 1757-899X</identifier><identifier>DOI: 10.1088/1757-899X/955/1/012021</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Columns (structural) ; Concentrated loads ; Design optimization ; Limit states ; Live loads ; Neural networks ; Optimization techniques ; Reinforced concrete ; Scientific papers ; Structural members</subject><ispartof>IOP conference series. Materials Science and Engineering, 2020-11, Vol.955 (1), p.12021</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</citedby><cites>FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1757-899X/955/1/012021/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Nongsiej, Eshanya Tongper</creatorcontrib><creatorcontrib>Natarajan, Karthiga @ Shenbagam</creatorcontrib><creatorcontrib>Murugesan, Saravanan</creatorcontrib><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><title>IOP conference series. Materials Science and Engineering</title><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><description>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</description><subject>Columns (structural)</subject><subject>Concentrated loads</subject><subject>Design optimization</subject><subject>Limit states</subject><subject>Live loads</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Reinforced concrete</subject><subject>Scientific papers</subject><subject>Structural members</subject><issn>1757-8981</issn><issn>1757-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhosoOKd_QQreeFObpG0-LnXOKUwHOsG7kCapZnZNTTpk_nozqhNB8OacA-d9zoEnio4hOIOA0hSSgiSUsaeUFUUKUwARQHAnGmwXu9uZwv3owPsFAJjkORhE5aX25rmJZ21nluZDdMY2sa3ie22ayjqpVTyyjXS60_GFFksfl-t4ohvdGSnqev0NhtydXjlRh9a9W_caz7V8aczbSh9Ge5WovT766sPo8Wo8H10n09nkZnQ-TWSGEEwgURgRJFkJWZEpoiCjChNcEFrmJVNISFwgRnUpSoAwFSrXuJIKCsEwLlU2jE76u62z4a3v-MKuXBNecoQhxSRUElK4T0lnvXe64q0zS-HWHAK-8ck3qvhGGw8-OeS9zwCiHjS2_bn8L3T6B3T7MP4V462qsk8PooWa</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Nongsiej, Eshanya Tongper</creator><creator>Natarajan, Karthiga @ Shenbagam</creator><creator>Murugesan, Saravanan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201101</creationdate><title>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</title><author>Nongsiej, Eshanya Tongper ; Natarajan, Karthiga @ Shenbagam ; Murugesan, Saravanan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3221-17d6272c9b1953d7d198d676578b4b9d2ac65298ebab0268ad4e6fcd1aa966bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Columns (structural)</topic><topic>Concentrated loads</topic><topic>Design optimization</topic><topic>Limit states</topic><topic>Live loads</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Reinforced concrete</topic><topic>Scientific papers</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nongsiej, Eshanya Tongper</creatorcontrib><creatorcontrib>Natarajan, Karthiga @ Shenbagam</creatorcontrib><creatorcontrib>Murugesan, Saravanan</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>IOP conference series. Materials Science and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nongsiej, Eshanya Tongper</au><au>Natarajan, Karthiga @ Shenbagam</au><au>Murugesan, Saravanan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique</atitle><jtitle>IOP conference series. Materials Science and Engineering</jtitle><addtitle>IOP Conf. Ser.: Mater. Sci. Eng</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>955</volume><issue>1</issue><spage>12021</spage><pages>12021-</pages><issn>1757-8981</issn><eissn>1757-899X</eissn><abstract>An approach to find the accurate optimal solution for structural elements such as beams, columns, footings etc. has been studied by huge researches in the current situation. As an addition in this research paper optimal design of two different types of reinforced concrete beams with different loading conditions one with concentrated load and another with UDL has been considered in addition to its self-weight, live load, equilibrium and serviceability constraints. Manual design of beams has been done in order to verify with the optimization technique limit state approach with accordance to the Indian standard codal provisions, classical and non-traditional optimization technique are done and the results are tabulated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1757-899X/955/1/012021</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1757-8981 |
ispartof | IOP conference series. Materials Science and Engineering, 2020-11, Vol.955 (1), p.12021 |
issn | 1757-8981 1757-899X |
language | eng |
recordid | cdi_proquest_journals_2618672617 |
source | Institute of Physics Open Access Journal Titles; Institute of Physics IOPscience extra; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Columns (structural) Concentrated loads Design optimization Limit states Live loads Neural networks Optimization techniques Reinforced concrete Scientific papers Structural members |
title | Design Optimization of Reinforced Concrete Beams by Genetically Optimized Neural Network Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T14%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Optimization%20of%20Reinforced%20Concrete%20Beams%20by%20Genetically%20Optimized%20Neural%20Network%20Technique&rft.jtitle=IOP%20conference%20series.%20Materials%20Science%20and%20Engineering&rft.au=Nongsiej,%20Eshanya%20Tongper&rft.date=2020-11-01&rft.volume=955&rft.issue=1&rft.spage=12021&rft.pages=12021-&rft.issn=1757-8981&rft.eissn=1757-899X&rft_id=info:doi/10.1088/1757-899X/955/1/012021&rft_dat=%3Cproquest_iop_j%3E2618672617%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618672617&rft_id=info:pmid/&rfr_iscdi=true |