Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection

This paper first analyzes credit assessment of cross-border E-commerce platform suppliers based on big data from two aspects: credit evaluation index system and credit evaluation model. On this basis, this paper summarizes the recommendations of supplier credit assessment for cross-border E-commerce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2020-07, Vol.1601 (3), p.32037
1. Verfasser: Zhang, Yi-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 32037
container_title Journal of physics. Conference series
container_volume 1601
creator Zhang, Yi-Wen
description This paper first analyzes credit assessment of cross-border E-commerce platform suppliers based on big data from two aspects: credit evaluation index system and credit evaluation model. On this basis, this paper summarizes the recommendations of supplier credit assessment for cross-border E-commerce platform based on big data, in order to provide reference for the work of supplier credit assessment for cross-border E-commerce platform from the perspective of big data, hoping that this study can help promote the cross-border E-commerce platform construction and cross-border E-commerce industry development.
doi_str_mv 10.1088/1742-6596/1601/3/032037
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2618627376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618627376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-85a9c133b0556c72f6c282141045f6eb061d5aa060d47ad1cc981fe93236faad3</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhosoOKe_wYB3Qm0ObZJeujp1MnA4vQ5ZDtrRNTVtBf-9KZWJIJibBL7nfT_yRNE5glcIcp4gluKYZjlNEIUoIQkkGBJ2EE32k8P9m_Pj6KRttxCScNgkKp9Ma6RXb8DVoPCubeON89p4MI-V2-2MVwasKtlZ53dg3TdNVYZh4Y0uOzD_kFUvuzJkZ7I1eiiZla_gRnYSLOoupF1dGzUQp9GRlVVrzr7vafRyO38u7uPl492iuF7GiiDGYp7JXCFCNjDLqGLYUoU5RimCaWap2UCKdCYlpFCnTGqkVM6RNTnBhFopNZlGF2Nv4917b9pObF3v67BSYIo4xYwwGig2Umr4szdWNL7cSf8pEBSDVzEYE4M9MXgVRIxeQ_JyTJau-al-WBXr36BotA0w-QP-b8UX7vyHSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618627376</pqid></control><display><type>article</type><title>Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yi-Wen</creator><creatorcontrib>Zhang, Yi-Wen</creatorcontrib><description>This paper first analyzes credit assessment of cross-border E-commerce platform suppliers based on big data from two aspects: credit evaluation index system and credit evaluation model. On this basis, this paper summarizes the recommendations of supplier credit assessment for cross-border E-commerce platform based on big data, in order to provide reference for the work of supplier credit assessment for cross-border E-commerce platform from the perspective of big data, hoping that this study can help promote the cross-border E-commerce platform construction and cross-border E-commerce industry development.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1601/3/032037</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Big Data ; Electronic commerce ; Evaluation ; Industrial development ; Physics</subject><ispartof>Journal of physics. Conference series, 2020-07, Vol.1601 (3), p.32037</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3177-85a9c133b0556c72f6c282141045f6eb061d5aa060d47ad1cc981fe93236faad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1601/3/032037/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Zhang, Yi-Wen</creatorcontrib><title>Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>This paper first analyzes credit assessment of cross-border E-commerce platform suppliers based on big data from two aspects: credit evaluation index system and credit evaluation model. On this basis, this paper summarizes the recommendations of supplier credit assessment for cross-border E-commerce platform based on big data, in order to provide reference for the work of supplier credit assessment for cross-border E-commerce platform from the perspective of big data, hoping that this study can help promote the cross-border E-commerce platform construction and cross-border E-commerce industry development.</description><subject>Big Data</subject><subject>Electronic commerce</subject><subject>Evaluation</subject><subject>Industrial development</subject><subject>Physics</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAYhosoOKe_wYB3Qm0ObZJeujp1MnA4vQ5ZDtrRNTVtBf-9KZWJIJibBL7nfT_yRNE5glcIcp4gluKYZjlNEIUoIQkkGBJ2EE32k8P9m_Pj6KRttxCScNgkKp9Ma6RXb8DVoPCubeON89p4MI-V2-2MVwasKtlZ53dg3TdNVYZh4Y0uOzD_kFUvuzJkZ7I1eiiZla_gRnYSLOoupF1dGzUQp9GRlVVrzr7vafRyO38u7uPl492iuF7GiiDGYp7JXCFCNjDLqGLYUoU5RimCaWap2UCKdCYlpFCnTGqkVM6RNTnBhFopNZlGF2Nv4917b9pObF3v67BSYIo4xYwwGig2Umr4szdWNL7cSf8pEBSDVzEYE4M9MXgVRIxeQ_JyTJau-al-WBXr36BotA0w-QP-b8UX7vyHSg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zhang, Yi-Wen</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200701</creationdate><title>Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection</title><author>Zhang, Yi-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-85a9c133b0556c72f6c282141045f6eb061d5aa060d47ad1cc981fe93236faad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Big Data</topic><topic>Electronic commerce</topic><topic>Evaluation</topic><topic>Industrial development</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi-Wen</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>1601</volume><issue>3</issue><spage>32037</spage><pages>32037-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>This paper first analyzes credit assessment of cross-border E-commerce platform suppliers based on big data from two aspects: credit evaluation index system and credit evaluation model. On this basis, this paper summarizes the recommendations of supplier credit assessment for cross-border E-commerce platform based on big data, in order to provide reference for the work of supplier credit assessment for cross-border E-commerce platform from the perspective of big data, hoping that this study can help promote the cross-border E-commerce platform construction and cross-border E-commerce industry development.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1601/3/032037</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2020-07, Vol.1601 (3), p.32037
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2618627376
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Big Data
Electronic commerce
Evaluation
Industrial development
Physics
title Research on Cross-border E-commerce Platform Supplier Credit Evaluation Based on Big Data Interconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Cross-border%20E-commerce%20Platform%20Supplier%20Credit%20Evaluation%20Based%20on%20Big%20Data%20Interconnection&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Zhang,%20Yi-Wen&rft.date=2020-07-01&rft.volume=1601&rft.issue=3&rft.spage=32037&rft.pages=32037-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1601/3/032037&rft_dat=%3Cproquest_iop_j%3E2618627376%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618627376&rft_id=info:pmid/&rfr_iscdi=true