Second-order constitutive theory of fluids
A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipr...
Gespeichert in:
Veröffentlicht in: | Continuum mechanics and thermodynamics 2022, Vol.34 (1), p.185-215 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 215 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Continuum mechanics and thermodynamics |
container_volume | 34 |
creator | Paolucci, S. |
description | A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipresence is used along with the Coleman–Noll procedure to derive restrictions on the constitutive equations by utilizing the second law. The entropy flux is not assumed to be equal to the heat flux over the temperature. We obtain explicit results for all constitutive quantities up to quadratic nonlinearity so as to satisfy the Clausius–Duhem inequality. Our results are shown to be consistent but more general than other published results. |
doi_str_mv | 10.1007/s00161-021-01053-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2618385543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689255435</galeid><sourcerecordid>A689255435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f87cb7c5e01eef5151c77f9a23e20f239d259b4cc882eb92551c927fe1becf7e3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4GrAnZCay6RJlqV4g4ILdR1mMic1pZ3UJCP07U0dwZ2EQw6H_zuXH6FrSmaUEHmXCKFzigkrQYngWJ-gCa05w0QLfYomRHOBKZXiHF2ktCEF0oJP0O0r2NB3OMQOYlXSlH0esv-CKn9AiIcquMptB9-lS3Tmmm2Cq99_it4f7t-WT3j18vi8XKyw5UJl7JS0rbQCCAVwggpqpXS6YRwYcYzrjgnd1tYqxaDVTBSBZtIBbcE6CXyKbsa--xg-B0jZbMIQ-zLSsDlVXAlR86Kajap1swXjexdybGx5Hex8uQOcL_XFXB0n1FwUgI2AjSGlCM7so9818WAoMUcTzWiiKSaaHxONLhAfoVTE_Rri3y7_UN8HjHNu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618385543</pqid></control><display><type>article</type><title>Second-order constitutive theory of fluids</title><source>SpringerNature Journals</source><creator>Paolucci, S.</creator><creatorcontrib>Paolucci, S.</creatorcontrib><description>A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipresence is used along with the Coleman–Noll procedure to derive restrictions on the constitutive equations by utilizing the second law. The entropy flux is not assumed to be equal to the heat flux over the temperature. We obtain explicit results for all constitutive quantities up to quadratic nonlinearity so as to satisfy the Clausius–Duhem inequality. Our results are shown to be consistent but more general than other published results.</description><identifier>ISSN: 0935-1175</identifier><identifier>EISSN: 1432-0959</identifier><identifier>DOI: 10.1007/s00161-021-01053-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Classical and Continuum Physics ; Constitutive equations ; Constitutive relationships ; Energy ; Engineering Thermodynamics ; Entropy ; Gases ; Heat ; Heat and Mass Transfer ; Heat flux ; Inequality ; Mathematical analysis ; Original Article ; Physics ; Physics and Astronomy ; Specific gravity ; Structural Materials ; Theoretical and Applied Mechanics ; Velocity</subject><ispartof>Continuum mechanics and thermodynamics, 2022, Vol.34 (1), p.185-215</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f87cb7c5e01eef5151c77f9a23e20f239d259b4cc882eb92551c927fe1becf7e3</citedby><cites>FETCH-LOGICAL-c358t-f87cb7c5e01eef5151c77f9a23e20f239d259b4cc882eb92551c927fe1becf7e3</cites><orcidid>0000-0003-4911-4730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00161-021-01053-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00161-021-01053-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Paolucci, S.</creatorcontrib><title>Second-order constitutive theory of fluids</title><title>Continuum mechanics and thermodynamics</title><addtitle>Continuum Mech. Thermodyn</addtitle><description>A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipresence is used along with the Coleman–Noll procedure to derive restrictions on the constitutive equations by utilizing the second law. The entropy flux is not assumed to be equal to the heat flux over the temperature. We obtain explicit results for all constitutive quantities up to quadratic nonlinearity so as to satisfy the Clausius–Duhem inequality. Our results are shown to be consistent but more general than other published results.</description><subject>Analysis</subject><subject>Classical and Continuum Physics</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Energy</subject><subject>Engineering Thermodynamics</subject><subject>Entropy</subject><subject>Gases</subject><subject>Heat</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Specific gravity</subject><subject>Structural Materials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Velocity</subject><issn>0935-1175</issn><issn>1432-0959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsv4GrAnZCay6RJlqV4g4ILdR1mMic1pZ3UJCP07U0dwZ2EQw6H_zuXH6FrSmaUEHmXCKFzigkrQYngWJ-gCa05w0QLfYomRHOBKZXiHF2ktCEF0oJP0O0r2NB3OMQOYlXSlH0esv-CKn9AiIcquMptB9-lS3Tmmm2Cq99_it4f7t-WT3j18vi8XKyw5UJl7JS0rbQCCAVwggpqpXS6YRwYcYzrjgnd1tYqxaDVTBSBZtIBbcE6CXyKbsa--xg-B0jZbMIQ-zLSsDlVXAlR86Kajap1swXjexdybGx5Hex8uQOcL_XFXB0n1FwUgI2AjSGlCM7so9818WAoMUcTzWiiKSaaHxONLhAfoVTE_Rri3y7_UN8HjHNu</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Paolucci, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4911-4730</orcidid></search><sort><creationdate>2022</creationdate><title>Second-order constitutive theory of fluids</title><author>Paolucci, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f87cb7c5e01eef5151c77f9a23e20f239d259b4cc882eb92551c927fe1becf7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Classical and Continuum Physics</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Energy</topic><topic>Engineering Thermodynamics</topic><topic>Entropy</topic><topic>Gases</topic><topic>Heat</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Specific gravity</topic><topic>Structural Materials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolucci, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Continuum mechanics and thermodynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolucci, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Second-order constitutive theory of fluids</atitle><jtitle>Continuum mechanics and thermodynamics</jtitle><stitle>Continuum Mech. Thermodyn</stitle><date>2022</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>185</spage><epage>215</epage><pages>185-215</pages><issn>0935-1175</issn><eissn>1432-0959</eissn><abstract>A fully second-order continuum theory of fluids is developed. The conventional balance equations of mass, linear momentum, energy and entropy are used. Constitutive equations are assumed to depend on density, temperature and velocity, and their derivatives up to second order. The principle of equipresence is used along with the Coleman–Noll procedure to derive restrictions on the constitutive equations by utilizing the second law. The entropy flux is not assumed to be equal to the heat flux over the temperature. We obtain explicit results for all constitutive quantities up to quadratic nonlinearity so as to satisfy the Clausius–Duhem inequality. Our results are shown to be consistent but more general than other published results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00161-021-01053-9</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4911-4730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-1175 |
ispartof | Continuum mechanics and thermodynamics, 2022, Vol.34 (1), p.185-215 |
issn | 0935-1175 1432-0959 |
language | eng |
recordid | cdi_proquest_journals_2618385543 |
source | SpringerNature Journals |
subjects | Analysis Classical and Continuum Physics Constitutive equations Constitutive relationships Energy Engineering Thermodynamics Entropy Gases Heat Heat and Mass Transfer Heat flux Inequality Mathematical analysis Original Article Physics Physics and Astronomy Specific gravity Structural Materials Theoretical and Applied Mechanics Velocity |
title | Second-order constitutive theory of fluids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Second-order%20constitutive%20theory%20of%20fluids&rft.jtitle=Continuum%20mechanics%20and%20thermodynamics&rft.au=Paolucci,%20S.&rft.date=2022&rft.volume=34&rft.issue=1&rft.spage=185&rft.epage=215&rft.pages=185-215&rft.issn=0935-1175&rft.eissn=1432-0959&rft_id=info:doi/10.1007/s00161-021-01053-9&rft_dat=%3Cgale_proqu%3EA689255435%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618385543&rft_id=info:pmid/&rft_galeid=A689255435&rfr_iscdi=true |