Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization
In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs),...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-01, Vol.14 (1), p.445 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 445 |
container_title | Sustainability |
container_volume | 14 |
creator | Radziemska, Maja Gusiatin, Zygmunt Mariusz Mazur, Zbigniew Hammerschmiedt, Tereza Bęś, Agnieszka Kintl, Antonin Galiova, Michaela Vasinova Holatko, Jiri Blazejczyk, Aurelia Kumar, Vinod Brtnicky, Martin |
description | In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified. |
doi_str_mv | 10.3390/su14010445 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2618267253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815705088</galeid><sourcerecordid>A815705088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a0e50539a081b4e7b0180c3e156143252387547c2ee4d78f7da1f21f43776e833</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oIFTwpb87lJj7VULRQsWs9Lmk3alN1NTbLQ-utNqaCdOczw8rwzMAPALYJDQkbwMXSIQgQpZReghyFHOYIMXv7rr8EghC1MQQgaoaIHFk_WqY30-TgEG6KussXmEF2IcmVr-y2jdW1mnM8WLuo2WlnXh2zp9lZl01o3ScpmTeP-4BtwZWQd9OC39sHn83Q5ec3nby-zyXieK1KImEuoGWRkJKFAK6r5CiIBFdGIFYgSzDARnFGusNa04sLwSiKDkaGE80ILQvrg7jR3591Xp0Mst67zbVpZ4gIJXHDMjtTwRK1lrUvbGhe9VCkr3VjlWm1s0scCMZ7OI0Qy3J8ZEhP1Pq5lF0I5-3g_Zx9OrPIuBK9NufO2kf5QIlgeP1L-fYT8APE1e64</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618267253</pqid></control><display><type>article</type><title>Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Radziemska, Maja ; Gusiatin, Zygmunt Mariusz ; Mazur, Zbigniew ; Hammerschmiedt, Tereza ; Bęś, Agnieszka ; Kintl, Antonin ; Galiova, Michaela Vasinova ; Holatko, Jiri ; Blazejczyk, Aurelia ; Kumar, Vinod ; Brtnicky, Martin</creator><creatorcontrib>Radziemska, Maja ; Gusiatin, Zygmunt Mariusz ; Mazur, Zbigniew ; Hammerschmiedt, Tereza ; Bęś, Agnieszka ; Kintl, Antonin ; Galiova, Michaela Vasinova ; Holatko, Jiri ; Blazejczyk, Aurelia ; Kumar, Vinod ; Brtnicky, Martin</creatorcontrib><description>In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su14010445</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Atomic absorption spectroscopy ; Bioavailability ; Biomass ; Bioremediation ; Cadmium ; Calcium chloride ; Charcoal ; Chemical properties ; Control ; Dactylis glomerata ; Environmental aspects ; Experiments ; Heavy metals ; Immobilization ; Laboratories ; Lead ; Methods ; Microscopy ; Moisture content ; New technology ; Particle size ; Plant biomass ; Plant growth ; Polyethylene ; Precipitation ; Roots ; Sediment pollution ; Soil contamination ; Soil environment ; Soil pH ; Soil pollution ; Soil remediation ; Soils ; Spectral analysis ; Spectrometry ; Sustainability ; Zinc</subject><ispartof>Sustainability, 2022-01, Vol.14 (1), p.445</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a0e50539a081b4e7b0180c3e156143252387547c2ee4d78f7da1f21f43776e833</citedby><cites>FETCH-LOGICAL-c368t-a0e50539a081b4e7b0180c3e156143252387547c2ee4d78f7da1f21f43776e833</cites><orcidid>0000-0002-6904-7793 ; 0000-0002-3526-5944 ; 0000-0001-5237-722X ; 0000-0002-0031-083X ; 0000-0003-3649-4252 ; 0000-0002-5402-6893 ; 0000-0001-6142-1026 ; 0000-0003-1621-2019 ; 0000-0003-4156-4673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Radziemska, Maja</creatorcontrib><creatorcontrib>Gusiatin, Zygmunt Mariusz</creatorcontrib><creatorcontrib>Mazur, Zbigniew</creatorcontrib><creatorcontrib>Hammerschmiedt, Tereza</creatorcontrib><creatorcontrib>Bęś, Agnieszka</creatorcontrib><creatorcontrib>Kintl, Antonin</creatorcontrib><creatorcontrib>Galiova, Michaela Vasinova</creatorcontrib><creatorcontrib>Holatko, Jiri</creatorcontrib><creatorcontrib>Blazejczyk, Aurelia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Brtnicky, Martin</creatorcontrib><title>Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization</title><title>Sustainability</title><description>In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.</description><subject>Additives</subject><subject>Atomic absorption spectroscopy</subject><subject>Bioavailability</subject><subject>Biomass</subject><subject>Bioremediation</subject><subject>Cadmium</subject><subject>Calcium chloride</subject><subject>Charcoal</subject><subject>Chemical properties</subject><subject>Control</subject><subject>Dactylis glomerata</subject><subject>Environmental aspects</subject><subject>Experiments</subject><subject>Heavy metals</subject><subject>Immobilization</subject><subject>Laboratories</subject><subject>Lead</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Moisture content</subject><subject>New technology</subject><subject>Particle size</subject><subject>Plant biomass</subject><subject>Plant growth</subject><subject>Polyethylene</subject><subject>Precipitation</subject><subject>Roots</subject><subject>Sediment pollution</subject><subject>Soil contamination</subject><subject>Soil environment</subject><subject>Soil pH</subject><subject>Soil pollution</subject><subject>Soil remediation</subject><subject>Soils</subject><subject>Spectral analysis</subject><subject>Spectrometry</subject><subject>Sustainability</subject><subject>Zinc</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oIFTwpb87lJj7VULRQsWs9Lmk3alN1NTbLQ-utNqaCdOczw8rwzMAPALYJDQkbwMXSIQgQpZReghyFHOYIMXv7rr8EghC1MQQgaoaIHFk_WqY30-TgEG6KussXmEF2IcmVr-y2jdW1mnM8WLuo2WlnXh2zp9lZl01o3ScpmTeP-4BtwZWQd9OC39sHn83Q5ec3nby-zyXieK1KImEuoGWRkJKFAK6r5CiIBFdGIFYgSzDARnFGusNa04sLwSiKDkaGE80ILQvrg7jR3591Xp0Mst67zbVpZ4gIJXHDMjtTwRK1lrUvbGhe9VCkr3VjlWm1s0scCMZ7OI0Qy3J8ZEhP1Pq5lF0I5-3g_Zx9OrPIuBK9NufO2kf5QIlgeP1L-fYT8APE1e64</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Radziemska, Maja</creator><creator>Gusiatin, Zygmunt Mariusz</creator><creator>Mazur, Zbigniew</creator><creator>Hammerschmiedt, Tereza</creator><creator>Bęś, Agnieszka</creator><creator>Kintl, Antonin</creator><creator>Galiova, Michaela Vasinova</creator><creator>Holatko, Jiri</creator><creator>Blazejczyk, Aurelia</creator><creator>Kumar, Vinod</creator><creator>Brtnicky, Martin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6904-7793</orcidid><orcidid>https://orcid.org/0000-0002-3526-5944</orcidid><orcidid>https://orcid.org/0000-0001-5237-722X</orcidid><orcidid>https://orcid.org/0000-0002-0031-083X</orcidid><orcidid>https://orcid.org/0000-0003-3649-4252</orcidid><orcidid>https://orcid.org/0000-0002-5402-6893</orcidid><orcidid>https://orcid.org/0000-0001-6142-1026</orcidid><orcidid>https://orcid.org/0000-0003-1621-2019</orcidid><orcidid>https://orcid.org/0000-0003-4156-4673</orcidid></search><sort><creationdate>20220101</creationdate><title>Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization</title><author>Radziemska, Maja ; Gusiatin, Zygmunt Mariusz ; Mazur, Zbigniew ; Hammerschmiedt, Tereza ; Bęś, Agnieszka ; Kintl, Antonin ; Galiova, Michaela Vasinova ; Holatko, Jiri ; Blazejczyk, Aurelia ; Kumar, Vinod ; Brtnicky, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a0e50539a081b4e7b0180c3e156143252387547c2ee4d78f7da1f21f43776e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additives</topic><topic>Atomic absorption spectroscopy</topic><topic>Bioavailability</topic><topic>Biomass</topic><topic>Bioremediation</topic><topic>Cadmium</topic><topic>Calcium chloride</topic><topic>Charcoal</topic><topic>Chemical properties</topic><topic>Control</topic><topic>Dactylis glomerata</topic><topic>Environmental aspects</topic><topic>Experiments</topic><topic>Heavy metals</topic><topic>Immobilization</topic><topic>Laboratories</topic><topic>Lead</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Moisture content</topic><topic>New technology</topic><topic>Particle size</topic><topic>Plant biomass</topic><topic>Plant growth</topic><topic>Polyethylene</topic><topic>Precipitation</topic><topic>Roots</topic><topic>Sediment pollution</topic><topic>Soil contamination</topic><topic>Soil environment</topic><topic>Soil pH</topic><topic>Soil pollution</topic><topic>Soil remediation</topic><topic>Soils</topic><topic>Spectral analysis</topic><topic>Spectrometry</topic><topic>Sustainability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radziemska, Maja</creatorcontrib><creatorcontrib>Gusiatin, Zygmunt Mariusz</creatorcontrib><creatorcontrib>Mazur, Zbigniew</creatorcontrib><creatorcontrib>Hammerschmiedt, Tereza</creatorcontrib><creatorcontrib>Bęś, Agnieszka</creatorcontrib><creatorcontrib>Kintl, Antonin</creatorcontrib><creatorcontrib>Galiova, Michaela Vasinova</creatorcontrib><creatorcontrib>Holatko, Jiri</creatorcontrib><creatorcontrib>Blazejczyk, Aurelia</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Brtnicky, Martin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radziemska, Maja</au><au>Gusiatin, Zygmunt Mariusz</au><au>Mazur, Zbigniew</au><au>Hammerschmiedt, Tereza</au><au>Bęś, Agnieszka</au><au>Kintl, Antonin</au><au>Galiova, Michaela Vasinova</au><au>Holatko, Jiri</au><au>Blazejczyk, Aurelia</au><au>Kumar, Vinod</au><au>Brtnicky, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization</atitle><jtitle>Sustainability</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>445</spage><pages>445-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>In response to the growing threat to the quality of the soil environment, new technologies are being developed to protect and remediate contaminated sites. A new approach, namely, assisted phytostabilization, has been used in areas contaminated with high levels of potentially toxic elements (PTEs), using various soil additives. This paper determined the effectiveness of biochar-assisted phytostabilization using Dactylis glomerata L. of soil contaminated with high concentrations of the selected PTEs (in mg/kg soil): Cu (780 ± 144), Cd (25.9 ± 2.5), Pb (13,540 ± 669) and Zn (8433 ± 1376). The content of the selected PTEs in the roots and above-ground parts of the tested grass, and in the soil, was determined by atomic absorption spectrometry (AAS). The addition of biochar to the contaminated soil led to an increase in plant biomass and caused an increase in soil pH values. Concentrations of Cu, Cd, Pb and Zn were higher in the roots than in the above-ground parts of Dactylis glomerata L. The application of biochar significantly reduced the total content of PTEs in the soil after finishing the phytostabilization experiment, as well as reducing the content of bioavailable forms extracted from the soil using CaCl2 solution, which was clearly visible with respect to Cd and Pb. It is concluded that the use of biochar in supporting the processes of assisted phytostabilization of soils contaminated with PTEs is justified.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su14010445</doi><orcidid>https://orcid.org/0000-0002-6904-7793</orcidid><orcidid>https://orcid.org/0000-0002-3526-5944</orcidid><orcidid>https://orcid.org/0000-0001-5237-722X</orcidid><orcidid>https://orcid.org/0000-0002-0031-083X</orcidid><orcidid>https://orcid.org/0000-0003-3649-4252</orcidid><orcidid>https://orcid.org/0000-0002-5402-6893</orcidid><orcidid>https://orcid.org/0000-0001-6142-1026</orcidid><orcidid>https://orcid.org/0000-0003-1621-2019</orcidid><orcidid>https://orcid.org/0000-0003-4156-4673</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-01, Vol.14 (1), p.445 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2618267253 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Additives Atomic absorption spectroscopy Bioavailability Biomass Bioremediation Cadmium Calcium chloride Charcoal Chemical properties Control Dactylis glomerata Environmental aspects Experiments Heavy metals Immobilization Laboratories Lead Methods Microscopy Moisture content New technology Particle size Plant biomass Plant growth Polyethylene Precipitation Roots Sediment pollution Soil contamination Soil environment Soil pH Soil pollution Soil remediation Soils Spectral analysis Spectrometry Sustainability Zinc |
title | Biochar-Assisted Phytostabilization for Potentially Toxic Element Immobilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochar-Assisted%20Phytostabilization%20for%20Potentially%20Toxic%20Element%20Immobilization&rft.jtitle=Sustainability&rft.au=Radziemska,%20Maja&rft.date=2022-01-01&rft.volume=14&rft.issue=1&rft.spage=445&rft.pages=445-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su14010445&rft_dat=%3Cgale_proqu%3EA815705088%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618267253&rft_id=info:pmid/&rft_galeid=A815705088&rfr_iscdi=true |