Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging

Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mountain science 2022, Vol.19 (1), p.58-72
Hauptverfasser: Lu, Xin-yu, Chen, Yuan-yuan, Tang, Guo-qiang, Wang, Xiu-qin, Liu, Yan, Wei, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 58
container_title Journal of mountain science
container_volume 19
creator Lu, Xin-yu
Chen, Yuan-yuan
Tang, Guo-qiang
Wang, Xiu-qin
Liu, Yan
Wei, Ming
description Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.
doi_str_mv 10.1007/s11629-021-6901-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618246092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618246092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</originalsourceid><addsrcrecordid>eNp1kEFr3DAQhU1ooOkmPyA3Qc9KNLItr48ltEkgpQSSsxjLY6-2XsmV5Jb8kP7fyNlATz3NY_jeDO8VxSWIKxCiuY4ASrZcSOCqFcDrk-IM2rbkopTwIWvVSK5KUB-LTzHuhVBNu4Wz4u_jgi7ZhMn-JkYx2UOW3jE_sJ1fwvTC5kDGzm9I3lvH0o7Yk0UXd-jYd7-4hNZF1mGknmUEAyFPns_eusR-BjtaN7Le_3HR4LRqdD2LmGiabCI-4jIS6zEhO1BY4fPidMAp0sX73BTP374-3dzxhx-39zdfHrjJSRJX0FNbGeiQhKnqmohqKdZBjTJUkTTYNn3XdLWgoVPlMHRYgRgaYaDaluWm-Hy8Owf_a8np9T5ndvmllgq2slKilZmCI2WCjzHQoOeQawovGoRe29fH9nVuX6_t6zp75NETM-tGCv8u_9_0CvXsjFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618246092</pqid></control><display><type>article</type><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</creator><creatorcontrib>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</creatorcontrib><description>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-021-6901-5</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Environment ; Estimates ; False alarms ; Geography ; High resolution ; Hydrologic cycle ; Hydrologic data ; Hydrologic research ; Hydrological cycle ; Hydrology ; Mountain regions ; Mountainous areas ; Mountains ; Original Article ; Precipitation ; Probability density functions ; Probability theory ; Resolution ; Root-mean-square errors ; Satellites ; Spatial discrimination ; Spatial resolution ; Spatial variations ; Statistical methods ; Weather stations</subject><ispartof>Journal of mountain science, 2022, Vol.19 (1), p.58-72</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</citedby><cites>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</cites><orcidid>0000-0002-2526-7954 ; 0000-0002-9328-6153 ; 0000-0002-0923-583X ; 0000-0002-0892-0771 ; 0000-0001-5874-3163 ; 0000-0003-0935-8669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-021-6901-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-021-6901-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Xin-yu</creatorcontrib><creatorcontrib>Chen, Yuan-yuan</creatorcontrib><creatorcontrib>Tang, Guo-qiang</creatorcontrib><creatorcontrib>Wang, Xiu-qin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wei, Ming</creatorcontrib><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Environment</subject><subject>Estimates</subject><subject>False alarms</subject><subject>Geography</subject><subject>High resolution</subject><subject>Hydrologic cycle</subject><subject>Hydrologic data</subject><subject>Hydrologic research</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Mountains</subject><subject>Original Article</subject><subject>Precipitation</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spatial variations</subject><subject>Statistical methods</subject><subject>Weather stations</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFr3DAQhU1ooOkmPyA3Qc9KNLItr48ltEkgpQSSsxjLY6-2XsmV5Jb8kP7fyNlATz3NY_jeDO8VxSWIKxCiuY4ASrZcSOCqFcDrk-IM2rbkopTwIWvVSK5KUB-LTzHuhVBNu4Wz4u_jgi7ZhMn-JkYx2UOW3jE_sJ1fwvTC5kDGzm9I3lvH0o7Yk0UXd-jYd7-4hNZF1mGknmUEAyFPns_eusR-BjtaN7Le_3HR4LRqdD2LmGiabCI-4jIS6zEhO1BY4fPidMAp0sX73BTP374-3dzxhx-39zdfHrjJSRJX0FNbGeiQhKnqmohqKdZBjTJUkTTYNn3XdLWgoVPlMHRYgRgaYaDaluWm-Hy8Owf_a8np9T5ndvmllgq2slKilZmCI2WCjzHQoOeQawovGoRe29fH9nVuX6_t6zp75NETM-tGCv8u_9_0CvXsjFM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lu, Xin-yu</creator><creator>Chen, Yuan-yuan</creator><creator>Tang, Guo-qiang</creator><creator>Wang, Xiu-qin</creator><creator>Liu, Yan</creator><creator>Wei, Ming</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2526-7954</orcidid><orcidid>https://orcid.org/0000-0002-9328-6153</orcidid><orcidid>https://orcid.org/0000-0002-0923-583X</orcidid><orcidid>https://orcid.org/0000-0002-0892-0771</orcidid><orcidid>https://orcid.org/0000-0001-5874-3163</orcidid><orcidid>https://orcid.org/0000-0003-0935-8669</orcidid></search><sort><creationdate>2022</creationdate><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><author>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Environment</topic><topic>Estimates</topic><topic>False alarms</topic><topic>Geography</topic><topic>High resolution</topic><topic>Hydrologic cycle</topic><topic>Hydrologic data</topic><topic>Hydrologic research</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Mountains</topic><topic>Original Article</topic><topic>Precipitation</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spatial variations</topic><topic>Statistical methods</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xin-yu</creatorcontrib><creatorcontrib>Chen, Yuan-yuan</creatorcontrib><creatorcontrib>Tang, Guo-qiang</creatorcontrib><creatorcontrib>Wang, Xiu-qin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wei, Ming</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xin-yu</au><au>Chen, Yuan-yuan</au><au>Tang, Guo-qiang</au><au>Wang, Xiu-qin</au><au>Liu, Yan</au><au>Wei, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>58</spage><epage>72</epage><pages>58-72</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-021-6901-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2526-7954</orcidid><orcidid>https://orcid.org/0000-0002-9328-6153</orcidid><orcidid>https://orcid.org/0000-0002-0923-583X</orcidid><orcidid>https://orcid.org/0000-0002-0892-0771</orcidid><orcidid>https://orcid.org/0000-0001-5874-3163</orcidid><orcidid>https://orcid.org/0000-0003-0935-8669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1672-6316
ispartof Journal of mountain science, 2022, Vol.19 (1), p.58-72
issn 1672-6316
1993-0321
1008-2786
language eng
recordid cdi_proquest_journals_2618246092
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Ecology
Environment
Estimates
False alarms
Geography
High resolution
Hydrologic cycle
Hydrologic data
Hydrologic research
Hydrological cycle
Hydrology
Mountain regions
Mountainous areas
Mountains
Original Article
Precipitation
Probability density functions
Probability theory
Resolution
Root-mean-square errors
Satellites
Spatial discrimination
Spatial resolution
Spatial variations
Statistical methods
Weather stations
title Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20estimation%20of%20hourly%20precipitation%20in%20the%20Tianshan%20Mountains%20based%20on%20area-to-point%20kriging%20downscaling%20and%20satellite-gauge%20data%20merging&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Lu,%20Xin-yu&rft.date=2022&rft.volume=19&rft.issue=1&rft.spage=58&rft.epage=72&rft.pages=58-72&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-021-6901-5&rft_dat=%3Cproquest_cross%3E2618246092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618246092&rft_id=info:pmid/&rfr_iscdi=true