Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging
Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability...
Gespeichert in:
Veröffentlicht in: | Journal of mountain science 2022, Vol.19 (1), p.58-72 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 58 |
container_title | Journal of mountain science |
container_volume | 19 |
creator | Lu, Xin-yu Chen, Yuan-yuan Tang, Guo-qiang Wang, Xiu-qin Liu, Yan Wei, Ming |
description | Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions. |
doi_str_mv | 10.1007/s11629-021-6901-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618246092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618246092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</originalsourceid><addsrcrecordid>eNp1kEFr3DAQhU1ooOkmPyA3Qc9KNLItr48ltEkgpQSSsxjLY6-2XsmV5Jb8kP7fyNlATz3NY_jeDO8VxSWIKxCiuY4ASrZcSOCqFcDrk-IM2rbkopTwIWvVSK5KUB-LTzHuhVBNu4Wz4u_jgi7ZhMn-JkYx2UOW3jE_sJ1fwvTC5kDGzm9I3lvH0o7Yk0UXd-jYd7-4hNZF1mGknmUEAyFPns_eusR-BjtaN7Le_3HR4LRqdD2LmGiabCI-4jIS6zEhO1BY4fPidMAp0sX73BTP374-3dzxhx-39zdfHrjJSRJX0FNbGeiQhKnqmohqKdZBjTJUkTTYNn3XdLWgoVPlMHRYgRgaYaDaluWm-Hy8Owf_a8np9T5ndvmllgq2slKilZmCI2WCjzHQoOeQawovGoRe29fH9nVuX6_t6zp75NETM-tGCv8u_9_0CvXsjFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618246092</pqid></control><display><type>article</type><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</creator><creatorcontrib>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</creatorcontrib><description>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</description><identifier>ISSN: 1672-6316</identifier><identifier>EISSN: 1993-0321</identifier><identifier>EISSN: 1008-2786</identifier><identifier>DOI: 10.1007/s11629-021-6901-5</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Environment ; Estimates ; False alarms ; Geography ; High resolution ; Hydrologic cycle ; Hydrologic data ; Hydrologic research ; Hydrological cycle ; Hydrology ; Mountain regions ; Mountainous areas ; Mountains ; Original Article ; Precipitation ; Probability density functions ; Probability theory ; Resolution ; Root-mean-square errors ; Satellites ; Spatial discrimination ; Spatial resolution ; Spatial variations ; Statistical methods ; Weather stations</subject><ispartof>Journal of mountain science, 2022, Vol.19 (1), p.58-72</ispartof><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</citedby><cites>FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</cites><orcidid>0000-0002-2526-7954 ; 0000-0002-9328-6153 ; 0000-0002-0923-583X ; 0000-0002-0892-0771 ; 0000-0001-5874-3163 ; 0000-0003-0935-8669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11629-021-6901-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11629-021-6901-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lu, Xin-yu</creatorcontrib><creatorcontrib>Chen, Yuan-yuan</creatorcontrib><creatorcontrib>Tang, Guo-qiang</creatorcontrib><creatorcontrib>Wang, Xiu-qin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wei, Ming</creatorcontrib><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><title>Journal of mountain science</title><addtitle>J. Mt. Sci</addtitle><description>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</description><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Environment</subject><subject>Estimates</subject><subject>False alarms</subject><subject>Geography</subject><subject>High resolution</subject><subject>Hydrologic cycle</subject><subject>Hydrologic data</subject><subject>Hydrologic research</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Mountains</subject><subject>Original Article</subject><subject>Precipitation</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Resolution</subject><subject>Root-mean-square errors</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spatial variations</subject><subject>Statistical methods</subject><subject>Weather stations</subject><issn>1672-6316</issn><issn>1993-0321</issn><issn>1008-2786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFr3DAQhU1ooOkmPyA3Qc9KNLItr48ltEkgpQSSsxjLY6-2XsmV5Jb8kP7fyNlATz3NY_jeDO8VxSWIKxCiuY4ASrZcSOCqFcDrk-IM2rbkopTwIWvVSK5KUB-LTzHuhVBNu4Wz4u_jgi7ZhMn-JkYx2UOW3jE_sJ1fwvTC5kDGzm9I3lvH0o7Yk0UXd-jYd7-4hNZF1mGknmUEAyFPns_eusR-BjtaN7Le_3HR4LRqdD2LmGiabCI-4jIS6zEhO1BY4fPidMAp0sX73BTP374-3dzxhx-39zdfHrjJSRJX0FNbGeiQhKnqmohqKdZBjTJUkTTYNn3XdLWgoVPlMHRYgRgaYaDaluWm-Hy8Owf_a8np9T5ndvmllgq2slKilZmCI2WCjzHQoOeQawovGoRe29fH9nVuX6_t6zp75NETM-tGCv8u_9_0CvXsjFM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Lu, Xin-yu</creator><creator>Chen, Yuan-yuan</creator><creator>Tang, Guo-qiang</creator><creator>Wang, Xiu-qin</creator><creator>Liu, Yan</creator><creator>Wei, Ming</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2526-7954</orcidid><orcidid>https://orcid.org/0000-0002-9328-6153</orcidid><orcidid>https://orcid.org/0000-0002-0923-583X</orcidid><orcidid>https://orcid.org/0000-0002-0892-0771</orcidid><orcidid>https://orcid.org/0000-0001-5874-3163</orcidid><orcidid>https://orcid.org/0000-0003-0935-8669</orcidid></search><sort><creationdate>2022</creationdate><title>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</title><author>Lu, Xin-yu ; Chen, Yuan-yuan ; Tang, Guo-qiang ; Wang, Xiu-qin ; Liu, Yan ; Wei, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-61de94c1bae0c455eee5205eeee76ce4e2ca97db7b50efb63ffba410f70c14833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Environment</topic><topic>Estimates</topic><topic>False alarms</topic><topic>Geography</topic><topic>High resolution</topic><topic>Hydrologic cycle</topic><topic>Hydrologic data</topic><topic>Hydrologic research</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Mountains</topic><topic>Original Article</topic><topic>Precipitation</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Resolution</topic><topic>Root-mean-square errors</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spatial variations</topic><topic>Statistical methods</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xin-yu</creatorcontrib><creatorcontrib>Chen, Yuan-yuan</creatorcontrib><creatorcontrib>Tang, Guo-qiang</creatorcontrib><creatorcontrib>Wang, Xiu-qin</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Wei, Ming</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of mountain science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xin-yu</au><au>Chen, Yuan-yuan</au><au>Tang, Guo-qiang</au><au>Wang, Xiu-qin</au><au>Liu, Yan</au><au>Wei, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging</atitle><jtitle>Journal of mountain science</jtitle><stitle>J. Mt. Sci</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>58</spage><epage>72</epage><pages>58-72</pages><issn>1672-6316</issn><eissn>1993-0321</eissn><eissn>1008-2786</eissn><abstract>Precipitation, a basic component of the water cycle, is significantly important for meteorological, climatological and hydrological research. However, accurate estimation on the precipitation remains considerably challenging because of the sparsity of gauge networks and the large spatial variability of precipitation over mountainous regions. Moreover, meteorological stations in mountainous areas are often dispersed and have difficulty in accurately reflecting the intensity and evolution of precipitation events. In this study, we proposed a novel method to produce high-quality, high-resolution precipitation estimates in the Tianshan Mountains, China, based on area-to-point kriging (ATPK) downscaling and a two-step correction, i.e., probability density function matching-optimum interpolation (PDF-OI). We obtained 1-km hourly precipitation data in the Tianshan Mountains by merging estimates from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) product with observations from 1065 meteorological stations in the warm season (May to September) during 2016–2018. The spatial resolution and accuracy of the merged precipitation data greatly increased compared to IMERG. According to a cross-validation with gauged observations, the correlation coefficient (CC), probability of detection (POD) and critical success index (CSI) increased from 0.30, 0.50 and 0.24 for IMERG to 0.63, 0.65 and 0.38, respectively, for the merged estimates, and the root mean squared error (RMSE), mean error (ME) and false alarm ratio (FAR) decreased from 0.46 to 0.38 mm/h, 0.06 to 0.05 mm/h and 0.69 to 0.52, respectively. The proposed method will be useful for developing high-resolution precipitation estimates in mountainous areas such as central Asia and the Belt and Road Initiative regions.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11629-021-6901-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2526-7954</orcidid><orcidid>https://orcid.org/0000-0002-9328-6153</orcidid><orcidid>https://orcid.org/0000-0002-0923-583X</orcidid><orcidid>https://orcid.org/0000-0002-0892-0771</orcidid><orcidid>https://orcid.org/0000-0001-5874-3163</orcidid><orcidid>https://orcid.org/0000-0003-0935-8669</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6316 |
ispartof | Journal of mountain science, 2022, Vol.19 (1), p.58-72 |
issn | 1672-6316 1993-0321 1008-2786 |
language | eng |
recordid | cdi_proquest_journals_2618246092 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Correlation coefficient Correlation coefficients Earth and Environmental Science Earth Sciences Ecology Environment Estimates False alarms Geography High resolution Hydrologic cycle Hydrologic data Hydrologic research Hydrological cycle Hydrology Mountain regions Mountainous areas Mountains Original Article Precipitation Probability density functions Probability theory Resolution Root-mean-square errors Satellites Spatial discrimination Spatial resolution Spatial variations Statistical methods Weather stations |
title | Quantitative estimation of hourly precipitation in the Tianshan Mountains based on area-to-point kriging downscaling and satellite-gauge data merging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20estimation%20of%20hourly%20precipitation%20in%20the%20Tianshan%20Mountains%20based%20on%20area-to-point%20kriging%20downscaling%20and%20satellite-gauge%20data%20merging&rft.jtitle=Journal%20of%20mountain%20science&rft.au=Lu,%20Xin-yu&rft.date=2022&rft.volume=19&rft.issue=1&rft.spage=58&rft.epage=72&rft.pages=58-72&rft.issn=1672-6316&rft.eissn=1993-0321&rft_id=info:doi/10.1007/s11629-021-6901-5&rft_dat=%3Cproquest_cross%3E2618246092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618246092&rft_id=info:pmid/&rfr_iscdi=true |