Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application

A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2022-02, Vol.128 (2), Article 98
Hauptverfasser: Makhlouf, M. M., Khallaf, Hani, Shehata, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 128
creator Makhlouf, M. M.
Khallaf, Hani
Shehata, M. M.
description A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10 2 –10 6 Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for V < 0.55 V ), trap-space charge limited current due to an exponential distribution of traps (for 0.55 ≤ V < 0.95 V ) and space charge limited current controlled by a single trap state (for 0.95 ≤ V ≤ 2 V ). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.
doi_str_mv 10.1007/s00339-021-05215-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618246002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618246002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo22yFPEFA250HdL01unQJjXpgDMb_7rREdx5N5dzOedc-Ai5YHDFAOrrBCCELoCzAkrOymJ3QBZMCl5AJeCQLEDLulBCV8fkJKU15JGcL8jn0zhha71DmiZ0cwzJhWlLrW_pHK1PU4gzHdGtrO_TSENHxzBsmxb9JquPvkU6r3pPu34YE-1CpKkfehc8XeGMMaw33s19likMNlKHw0DtNGWL_T6fkaPODgnPf_cpeb2_e7l9LJbPD0-3N8vCCVXORclLAHRSC9aUnapdwyQvhXZYoubK8VYi6-rG1hUHpirZ6UZpqxUT0EhVi1Nyue-dYnjfYJrNOmyizy8Nr5jisgLg2cX3Lpc5pIidmWI_2rg1DMw3aLMHbTJo8wPa7HJI7EMpm_0bxr_qf1JfMCiDwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618246002</pqid></control><display><type>article</type><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</creator><creatorcontrib>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</creatorcontrib><description>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10 2 –10 6 Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for V &lt; 0.55 V ), trap-space charge limited current due to an exponential distribution of traps (for 0.55 ≤ V &lt; 0.95 V ) and space charge limited current controlled by a single trap state (for 0.95 ≤ V ≤ 2 V ). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05215-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Applied physics ; Bias ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Depletion ; Electric potential ; Equivalent circuits ; Frequency ranges ; Heterojunctions ; Impedance spectroscopy ; Machines ; Manufacturing ; Materials science ; Molybdenum oxides ; Nanotechnology ; Optical and Electronic Materials ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Probability distribution functions ; Processes ; Silicon ; Solar cells ; Space charge ; Spectroscopic analysis ; Spectrum analysis ; Surfaces and Interfaces ; Temperature dependence ; Thermionic emission ; Thin Films ; Voltage</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2022-02, Vol.128 (2), Article 98</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</citedby><cites>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</cites><orcidid>0000-0002-7413-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05215-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05215-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Makhlouf, M. M.</creatorcontrib><creatorcontrib>Khallaf, Hani</creatorcontrib><creatorcontrib>Shehata, M. M.</creatorcontrib><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10 2 –10 6 Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for V &lt; 0.55 V ), trap-space charge limited current due to an exponential distribution of traps (for 0.55 ≤ V &lt; 0.95 V ) and space charge limited current controlled by a single trap state (for 0.95 ≤ V ≤ 2 V ). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</description><subject>Aluminum</subject><subject>Applied physics</subject><subject>Bias</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Depletion</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Heterojunctions</subject><subject>Impedance spectroscopy</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Molybdenum oxides</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probability distribution functions</subject><subject>Processes</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Space charge</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Thermionic emission</subject><subject>Thin Films</subject><subject>Voltage</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo22yFPEFA250HdL01unQJjXpgDMb_7rREdx5N5dzOedc-Ai5YHDFAOrrBCCELoCzAkrOymJ3QBZMCl5AJeCQLEDLulBCV8fkJKU15JGcL8jn0zhha71DmiZ0cwzJhWlLrW_pHK1PU4gzHdGtrO_TSENHxzBsmxb9JquPvkU6r3pPu34YE-1CpKkfehc8XeGMMaw33s19likMNlKHw0DtNGWL_T6fkaPODgnPf_cpeb2_e7l9LJbPD0-3N8vCCVXORclLAHRSC9aUnapdwyQvhXZYoubK8VYi6-rG1hUHpirZ6UZpqxUT0EhVi1Nyue-dYnjfYJrNOmyizy8Nr5jisgLg2cX3Lpc5pIidmWI_2rg1DMw3aLMHbTJo8wPa7HJI7EMpm_0bxr_qf1JfMCiDwA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Makhlouf, M. M.</creator><creator>Khallaf, Hani</creator><creator>Shehata, M. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7413-4322</orcidid></search><sort><creationdate>20220201</creationdate><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><author>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Applied physics</topic><topic>Bias</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Depletion</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Heterojunctions</topic><topic>Impedance spectroscopy</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Molybdenum oxides</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probability distribution functions</topic><topic>Processes</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Space charge</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Thermionic emission</topic><topic>Thin Films</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makhlouf, M. M.</creatorcontrib><creatorcontrib>Khallaf, Hani</creatorcontrib><creatorcontrib>Shehata, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makhlouf, M. M.</au><au>Khallaf, Hani</au><au>Shehata, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>128</volume><issue>2</issue><artnum>98</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10 2 –10 6 Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for V &lt; 0.55 V ), trap-space charge limited current due to an exponential distribution of traps (for 0.55 ≤ V &lt; 0.95 V ) and space charge limited current controlled by a single trap state (for 0.95 ≤ V ≤ 2 V ). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05215-z</doi><orcidid>https://orcid.org/0000-0002-7413-4322</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2022-02, Vol.128 (2), Article 98
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2618246002
source SpringerLink Journals - AutoHoldings
subjects Aluminum
Applied physics
Bias
Characterization and Evaluation of Materials
Condensed Matter Physics
Depletion
Electric potential
Equivalent circuits
Frequency ranges
Heterojunctions
Impedance spectroscopy
Machines
Manufacturing
Materials science
Molybdenum oxides
Nanotechnology
Optical and Electronic Materials
Photovoltaic cells
Physics
Physics and Astronomy
Probability distribution functions
Processes
Silicon
Solar cells
Space charge
Spectroscopic analysis
Spectrum analysis
Surfaces and Interfaces
Temperature dependence
Thermionic emission
Thin Films
Voltage
title Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20spectroscopy%20and%20transport%20mechanism%20of%20molybdenum%20oxide%20thin%20films%20for%20silicon%20heterojunction%20solar%20cell%20application&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Makhlouf,%20M.%20M.&rft.date=2022-02-01&rft.volume=128&rft.issue=2&rft.artnum=98&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05215-z&rft_dat=%3Cproquest_cross%3E2618246002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618246002&rft_id=info:pmid/&rfr_iscdi=true