Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application
A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO x / n -Si/Al heterojunction solar cell device. Impedance spectroscopy measurements ca...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2022-02, Vol.128 (2), Article 98 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 128 |
creator | Makhlouf, M. M. Khallaf, Hani Shehata, M. M. |
description | A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO
x
/
n
-Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10
2
–10
6
Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for
V
<
0.55
V
), trap-space charge limited current due to an exponential distribution of traps (for
0.55
≤
V
<
0.95
V
) and space charge limited current controlled by a single trap state (for
0.95
≤
V
≤
2
V
). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed. |
doi_str_mv | 10.1007/s00339-021-05215-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618246002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618246002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo22yFPEFA250HdL01unQJjXpgDMb_7rREdx5N5dzOedc-Ai5YHDFAOrrBCCELoCzAkrOymJ3QBZMCl5AJeCQLEDLulBCV8fkJKU15JGcL8jn0zhha71DmiZ0cwzJhWlLrW_pHK1PU4gzHdGtrO_TSENHxzBsmxb9JquPvkU6r3pPu34YE-1CpKkfehc8XeGMMaw33s19likMNlKHw0DtNGWL_T6fkaPODgnPf_cpeb2_e7l9LJbPD0-3N8vCCVXORclLAHRSC9aUnapdwyQvhXZYoubK8VYi6-rG1hUHpirZ6UZpqxUT0EhVi1Nyue-dYnjfYJrNOmyizy8Nr5jisgLg2cX3Lpc5pIidmWI_2rg1DMw3aLMHbTJo8wPa7HJI7EMpm_0bxr_qf1JfMCiDwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618246002</pqid></control><display><type>article</type><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><source>SpringerLink Journals - AutoHoldings</source><creator>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</creator><creatorcontrib>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</creatorcontrib><description>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO
x
/
n
-Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10
2
–10
6
Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for
V
<
0.55
V
), trap-space charge limited current due to an exponential distribution of traps (for
0.55
≤
V
<
0.95
V
) and space charge limited current controlled by a single trap state (for
0.95
≤
V
≤
2
V
). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-05215-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum ; Applied physics ; Bias ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Depletion ; Electric potential ; Equivalent circuits ; Frequency ranges ; Heterojunctions ; Impedance spectroscopy ; Machines ; Manufacturing ; Materials science ; Molybdenum oxides ; Nanotechnology ; Optical and Electronic Materials ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Probability distribution functions ; Processes ; Silicon ; Solar cells ; Space charge ; Spectroscopic analysis ; Spectrum analysis ; Surfaces and Interfaces ; Temperature dependence ; Thermionic emission ; Thin Films ; Voltage</subject><ispartof>Applied physics. A, Materials science & processing, 2022-02, Vol.128 (2), Article 98</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</citedby><cites>FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</cites><orcidid>0000-0002-7413-4322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-05215-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-05215-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Makhlouf, M. M.</creatorcontrib><creatorcontrib>Khallaf, Hani</creatorcontrib><creatorcontrib>Shehata, M. M.</creatorcontrib><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO
x
/
n
-Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10
2
–10
6
Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for
V
<
0.55
V
), trap-space charge limited current due to an exponential distribution of traps (for
0.55
≤
V
<
0.95
V
) and space charge limited current controlled by a single trap state (for
0.95
≤
V
≤
2
V
). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</description><subject>Aluminum</subject><subject>Applied physics</subject><subject>Bias</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Depletion</subject><subject>Electric potential</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Heterojunctions</subject><subject>Impedance spectroscopy</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Molybdenum oxides</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Probability distribution functions</subject><subject>Processes</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Space charge</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Surfaces and Interfaces</subject><subject>Temperature dependence</subject><subject>Thermionic emission</subject><subject>Thin Films</subject><subject>Voltage</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gKuA6-rNo22yFPEFA250HdL01unQJjXpgDMb_7rREdx5N5dzOedc-Ai5YHDFAOrrBCCELoCzAkrOymJ3QBZMCl5AJeCQLEDLulBCV8fkJKU15JGcL8jn0zhha71DmiZ0cwzJhWlLrW_pHK1PU4gzHdGtrO_TSENHxzBsmxb9JquPvkU6r3pPu34YE-1CpKkfehc8XeGMMaw33s19likMNlKHw0DtNGWL_T6fkaPODgnPf_cpeb2_e7l9LJbPD0-3N8vCCVXORclLAHRSC9aUnapdwyQvhXZYoubK8VYi6-rG1hUHpirZ6UZpqxUT0EhVi1Nyue-dYnjfYJrNOmyizy8Nr5jisgLg2cX3Lpc5pIidmWI_2rg1DMw3aLMHbTJo8wPa7HJI7EMpm_0bxr_qf1JfMCiDwA</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Makhlouf, M. M.</creator><creator>Khallaf, Hani</creator><creator>Shehata, M. M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7413-4322</orcidid></search><sort><creationdate>20220201</creationdate><title>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</title><author>Makhlouf, M. M. ; Khallaf, Hani ; Shehata, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-52500ec4931b5f87cb142539ce5e928c2d4e1f7ba76201864f9b89a98130b4873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Applied physics</topic><topic>Bias</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Depletion</topic><topic>Electric potential</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Heterojunctions</topic><topic>Impedance spectroscopy</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Molybdenum oxides</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Probability distribution functions</topic><topic>Processes</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Space charge</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Surfaces and Interfaces</topic><topic>Temperature dependence</topic><topic>Thermionic emission</topic><topic>Thin Films</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makhlouf, M. M.</creatorcontrib><creatorcontrib>Khallaf, Hani</creatorcontrib><creatorcontrib>Shehata, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makhlouf, M. M.</au><au>Khallaf, Hani</au><au>Shehata, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>128</volume><issue>2</issue><artnum>98</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>A comprehensive study is reported for temperature-dependent current–voltage (I–V–T), capacitance–voltage (C–V–T), and impedance spectroscopy measurements carried out in the temperature range of 289–413 K for Al/MoO
x
/
n
-Si/Al heterojunction solar cell device. Impedance spectroscopy measurements carried out over a broad frequency range (10
2
–10
6
Hz) exhibit semicircle standard Nyquist’s plots implying excellent device stability. An electrical equivalent circuit (EEC) for the device is proposed and the key fitting parameters for the proposed EEC are determined. The C–V–T characteristics of the cell as well as the temperature dependence of the built-in potential, doping gradient, and depletion region width are investigated. Based on the I–V–T measurements, three dominant transport mechanisms are identified in the forward bias regime; thermionic emission (for
V
<
0.55
V
), trap-space charge limited current due to an exponential distribution of traps (for
0.55
≤
V
<
0.95
V
) and space charge limited current controlled by a single trap state (for
0.95
≤
V
≤
2
V
). However, at reverse bias, two different conduction mechanisms, namely Schottky’s emission (SE) and Poole–Frenkel’s (PF) mechanisms are identified. The temperature dependence of the series and shunt resistances, barrier height, ideality factor as well as the photovoltaic performance of the device under illumination are carefully analyzed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-05215-z</doi><orcidid>https://orcid.org/0000-0002-7413-4322</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2022-02, Vol.128 (2), Article 98 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2618246002 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aluminum Applied physics Bias Characterization and Evaluation of Materials Condensed Matter Physics Depletion Electric potential Equivalent circuits Frequency ranges Heterojunctions Impedance spectroscopy Machines Manufacturing Materials science Molybdenum oxides Nanotechnology Optical and Electronic Materials Photovoltaic cells Physics Physics and Astronomy Probability distribution functions Processes Silicon Solar cells Space charge Spectroscopic analysis Spectrum analysis Surfaces and Interfaces Temperature dependence Thermionic emission Thin Films Voltage |
title | Impedance spectroscopy and transport mechanism of molybdenum oxide thin films for silicon heterojunction solar cell application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20spectroscopy%20and%20transport%20mechanism%20of%20molybdenum%20oxide%20thin%20films%20for%20silicon%20heterojunction%20solar%20cell%20application&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Makhlouf,%20M.%20M.&rft.date=2022-02-01&rft.volume=128&rft.issue=2&rft.artnum=98&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-05215-z&rft_dat=%3Cproquest_cross%3E2618246002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618246002&rft_id=info:pmid/&rfr_iscdi=true |