Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior
This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body‐centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson‐Tveergard‐Needleman (GTN) damage...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2021-12, Vol.44 (12), p.3499-3516 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3516 |
---|---|
container_issue | 12 |
container_start_page | 3499 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 44 |
creator | Gavazzoni, Matteo Pisati, Marco Beretta, Stefano Foletti, Stefano |
description | This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body‐centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson‐Tveergard‐Needleman (GTN) damage model is calibrated to predict failure in numerical simulations. The GTN model is used to predict failure of the lattice structures exhibiting brittle localized fracture, and it is validated through static tests. The results of experimental tension/compression monotonic tests on lattice samples are compared with the results of numerical simulations performed on as‐built geometry reconstructed by X‐ray computed tomography, showing a good correlation. Combining the damage model with computational micromechanics, multiaxial loading conditions are simulated to investigate the effective multiaxial strength of the lattice material. Yielding and failure loci are found by fitting a batch of points obtained by some multiaxial loading simulations. A formulation based on the criterion proposed by Tsai and Wu (1971) for anisotropic materials provides a good description of yielding and failure behavior under multiaxial load. Results are discussed, with a specific focus on the effect of as‐built defects on multiaxial strength, by comparing the resistance domains of as‐manufactured and as‐designed lattices. |
doi_str_mv | 10.1111/ffe.13587 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618223090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618223090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3327-add5341e2a7a29209d545bf86c9cb30a65bf25fff0b3e6227aa8a9b4f12f319a3</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDS0wMaf0RO8mISgtIRSwgsVmXxG5duUlxHNr-e1zCipeTpefudC9Ct5RMaHxTY_SEcpFnZ2hEU0kSJgtxjkZ5JmSSifzzEl113YYQKlPORwheexcsHCw43AUItorF62YV1rg1GDB_xDtvm6BrvNUBnIvCQYhQn2Rfhd5rrA9rW9pgmxUuvQ3BaVzqNXzb1l-jCwOu0zd_dYw-FvP32XOyfHt6mT0sk4pzliVQ14KnVDPIgBWMFLVIRWlyWRVVyQnI-GHCGENKriVjGUAORZkaygynBfAxuhvm7nz71esuqE3b-yauVEzSnDFOChLV_aAq33ad10bF67bgj4oSdUpQxQTVb4LRTge7t04f_4dqsZgPHT8U_HO2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618223090</pqid></control><display><type>article</type><title>Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gavazzoni, Matteo ; Pisati, Marco ; Beretta, Stefano ; Foletti, Stefano</creator><creatorcontrib>Gavazzoni, Matteo ; Pisati, Marco ; Beretta, Stefano ; Foletti, Stefano</creatorcontrib><description>This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body‐centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson‐Tveergard‐Needleman (GTN) damage model is calibrated to predict failure in numerical simulations. The GTN model is used to predict failure of the lattice structures exhibiting brittle localized fracture, and it is validated through static tests. The results of experimental tension/compression monotonic tests on lattice samples are compared with the results of numerical simulations performed on as‐built geometry reconstructed by X‐ray computed tomography, showing a good correlation. Combining the damage model with computational micromechanics, multiaxial loading conditions are simulated to investigate the effective multiaxial strength of the lattice material. Yielding and failure loci are found by fitting a batch of points obtained by some multiaxial loading simulations. A formulation based on the criterion proposed by Tsai and Wu (1971) for anisotropic materials provides a good description of yielding and failure behavior under multiaxial load. Results are discussed, with a specific focus on the effect of as‐built defects on multiaxial strength, by comparing the resistance domains of as‐manufactured and as‐designed lattices.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13587</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>additive materials ; aluminum alloy ; Aluminum base alloys ; Body centered cubic lattice ; Compression tests ; Computed tomography ; Damage assessment ; damage modeling ; Failure ; Laser beam melting ; Mathematical models ; mechanical properties ; Micromechanics ; multiaxial failure criterion ; Numerical prediction ; selective laser melting ; Simulation ; Static tests ; Three dimensional printing</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2021-12, Vol.44 (12), p.3499-3516</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3327-add5341e2a7a29209d545bf86c9cb30a65bf25fff0b3e6227aa8a9b4f12f319a3</citedby><cites>FETCH-LOGICAL-c3327-add5341e2a7a29209d545bf86c9cb30a65bf25fff0b3e6227aa8a9b4f12f319a3</cites><orcidid>0000-0002-0824-8348 ; 0000-0003-4140-2092 ; 0000-0002-8481-7004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13587$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13587$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gavazzoni, Matteo</creatorcontrib><creatorcontrib>Pisati, Marco</creatorcontrib><creatorcontrib>Beretta, Stefano</creatorcontrib><creatorcontrib>Foletti, Stefano</creatorcontrib><title>Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior</title><title>Fatigue & fracture of engineering materials & structures</title><description>This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body‐centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson‐Tveergard‐Needleman (GTN) damage model is calibrated to predict failure in numerical simulations. The GTN model is used to predict failure of the lattice structures exhibiting brittle localized fracture, and it is validated through static tests. The results of experimental tension/compression monotonic tests on lattice samples are compared with the results of numerical simulations performed on as‐built geometry reconstructed by X‐ray computed tomography, showing a good correlation. Combining the damage model with computational micromechanics, multiaxial loading conditions are simulated to investigate the effective multiaxial strength of the lattice material. Yielding and failure loci are found by fitting a batch of points obtained by some multiaxial loading simulations. A formulation based on the criterion proposed by Tsai and Wu (1971) for anisotropic materials provides a good description of yielding and failure behavior under multiaxial load. Results are discussed, with a specific focus on the effect of as‐built defects on multiaxial strength, by comparing the resistance domains of as‐manufactured and as‐designed lattices.</description><subject>additive materials</subject><subject>aluminum alloy</subject><subject>Aluminum base alloys</subject><subject>Body centered cubic lattice</subject><subject>Compression tests</subject><subject>Computed tomography</subject><subject>Damage assessment</subject><subject>damage modeling</subject><subject>Failure</subject><subject>Laser beam melting</subject><subject>Mathematical models</subject><subject>mechanical properties</subject><subject>Micromechanics</subject><subject>multiaxial failure criterion</subject><subject>Numerical prediction</subject><subject>selective laser melting</subject><subject>Simulation</subject><subject>Static tests</subject><subject>Three dimensional printing</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10D1PwzAQBmALgUQpDPwDS0wMaf0RO8mISgtIRSwgsVmXxG5duUlxHNr-e1zCipeTpefudC9Ct5RMaHxTY_SEcpFnZ2hEU0kSJgtxjkZ5JmSSifzzEl113YYQKlPORwheexcsHCw43AUItorF62YV1rg1GDB_xDtvm6BrvNUBnIvCQYhQn2Rfhd5rrA9rW9pgmxUuvQ3BaVzqNXzb1l-jCwOu0zd_dYw-FvP32XOyfHt6mT0sk4pzliVQ14KnVDPIgBWMFLVIRWlyWRVVyQnI-GHCGENKriVjGUAORZkaygynBfAxuhvm7nz71esuqE3b-yauVEzSnDFOChLV_aAq33ad10bF67bgj4oSdUpQxQTVb4LRTge7t04f_4dqsZgPHT8U_HO2</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Gavazzoni, Matteo</creator><creator>Pisati, Marco</creator><creator>Beretta, Stefano</creator><creator>Foletti, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0824-8348</orcidid><orcidid>https://orcid.org/0000-0003-4140-2092</orcidid><orcidid>https://orcid.org/0000-0002-8481-7004</orcidid></search><sort><creationdate>202112</creationdate><title>Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior</title><author>Gavazzoni, Matteo ; Pisati, Marco ; Beretta, Stefano ; Foletti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3327-add5341e2a7a29209d545bf86c9cb30a65bf25fff0b3e6227aa8a9b4f12f319a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive materials</topic><topic>aluminum alloy</topic><topic>Aluminum base alloys</topic><topic>Body centered cubic lattice</topic><topic>Compression tests</topic><topic>Computed tomography</topic><topic>Damage assessment</topic><topic>damage modeling</topic><topic>Failure</topic><topic>Laser beam melting</topic><topic>Mathematical models</topic><topic>mechanical properties</topic><topic>Micromechanics</topic><topic>multiaxial failure criterion</topic><topic>Numerical prediction</topic><topic>selective laser melting</topic><topic>Simulation</topic><topic>Static tests</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavazzoni, Matteo</creatorcontrib><creatorcontrib>Pisati, Marco</creatorcontrib><creatorcontrib>Beretta, Stefano</creatorcontrib><creatorcontrib>Foletti, Stefano</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavazzoni, Matteo</au><au>Pisati, Marco</au><au>Beretta, Stefano</au><au>Foletti, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2021-12</date><risdate>2021</risdate><volume>44</volume><issue>12</issue><spage>3499</spage><epage>3516</epage><pages>3499-3516</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>This paper focuses on numerical the prediction of multiaxial static strength of lattice structures. We analyze a body‐centered cubic cell printed with Selective Laser Melting in AlSi10Mg aluminum alloy. Parent material is experimentally characterized, and the Gurson‐Tveergard‐Needleman (GTN) damage model is calibrated to predict failure in numerical simulations. The GTN model is used to predict failure of the lattice structures exhibiting brittle localized fracture, and it is validated through static tests. The results of experimental tension/compression monotonic tests on lattice samples are compared with the results of numerical simulations performed on as‐built geometry reconstructed by X‐ray computed tomography, showing a good correlation. Combining the damage model with computational micromechanics, multiaxial loading conditions are simulated to investigate the effective multiaxial strength of the lattice material. Yielding and failure loci are found by fitting a batch of points obtained by some multiaxial loading simulations. A formulation based on the criterion proposed by Tsai and Wu (1971) for anisotropic materials provides a good description of yielding and failure behavior under multiaxial load. Results are discussed, with a specific focus on the effect of as‐built defects on multiaxial strength, by comparing the resistance domains of as‐manufactured and as‐designed lattices.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13587</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0824-8348</orcidid><orcidid>https://orcid.org/0000-0003-4140-2092</orcidid><orcidid>https://orcid.org/0000-0002-8481-7004</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2021-12, Vol.44 (12), p.3499-3516 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2618223090 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | additive materials aluminum alloy Aluminum base alloys Body centered cubic lattice Compression tests Computed tomography Damage assessment damage modeling Failure Laser beam melting Mathematical models mechanical properties Micromechanics multiaxial failure criterion Numerical prediction selective laser melting Simulation Static tests Three dimensional printing |
title | Multiaxial static strength of a 3D printed metallic lattice structure exhibiting brittle behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiaxial%20static%20strength%20of%20a%203D%20printed%20metallic%20lattice%20structure%20exhibiting%20brittle%20behavior&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Gavazzoni,%20Matteo&rft.date=2021-12&rft.volume=44&rft.issue=12&rft.spage=3499&rft.epage=3516&rft.pages=3499-3516&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13587&rft_dat=%3Cproquest_cross%3E2618223090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618223090&rft_id=info:pmid/&rfr_iscdi=true |