Fracture and repair in a bio‐inspired self‐healing structure

Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2021-12, Vol.44 (12), p.3373-3383
Hauptverfasser: Hone, Timothy, Kelehan, Sarah, Taylor, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3383
container_issue 12
container_start_page 3373
container_title Fatigue & fracture of engineering materials & structures
container_volume 44
creator Hone, Timothy
Kelehan, Sarah
Taylor, David
description Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems. Highlights Definition of terms: self‐healing material, self‐healing structure, and self‐healing system. Creation of a self‐healing structure inspired by plants. Testing shows very good self‐healing capability.
doi_str_mv 10.1111/ffe.13563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618222025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618222025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4efIOAJw_dTZomaW_KslVhwYuCt5A0E81S25psEW8-gs_okxi3Xp3L8MP3z8CH0DklC5pm6RwsKOOCHaAZLQTJclHxQzQrJReZ5OXTMTqJcUsIFQVjM3RVB93sxgBYdxYHGLQP2HdYY-P7788v38XBB7A4QutSfgHd-u4Zx10Y971TdOR0G-Hsb8_RY71-WN1mm_ubu9X1JmsYy1kmpTMSCim5cdY0ltuiIowJMNIUpTFG07KABqysLBhIUQjHSUWZ0KS0ms3RxXR3CP3bCHGntv0YuvRS5YKWeZ6TnCfqcqKa0McYwKkh-FcdPhQl6leQSoLUXlBilxP77lv4-B9Udb2eGj9GMml-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618222025</pqid></control><display><type>article</type><title>Fracture and repair in a bio‐inspired self‐healing structure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</creator><creatorcontrib>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</creatorcontrib><description>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems. Highlights Definition of terms: self‐healing material, self‐healing structure, and self‐healing system. Creation of a self‐healing structure inspired by plants. Testing shows very good self‐healing capability.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13563</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>bending ; biomimetic ; Cellular structure ; Channels ; Computer simulation ; Damage ; Deformation effects ; Energy absorption ; failure ; Finite element method ; Healing ; Mechanical properties ; ovalization ; Repair ; self‐healing ; self‐repair ; structure</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2021-12, Vol.44 (12), p.3373-3383</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</citedby><cites>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</cites><orcidid>0000-0002-5470-2062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13563$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13563$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Kelehan, Sarah</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><title>Fracture and repair in a bio‐inspired self‐healing structure</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems. Highlights Definition of terms: self‐healing material, self‐healing structure, and self‐healing system. Creation of a self‐healing structure inspired by plants. Testing shows very good self‐healing capability.</description><subject>bending</subject><subject>biomimetic</subject><subject>Cellular structure</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Damage</subject><subject>Deformation effects</subject><subject>Energy absorption</subject><subject>failure</subject><subject>Finite element method</subject><subject>Healing</subject><subject>Mechanical properties</subject><subject>ovalization</subject><subject>Repair</subject><subject>self‐healing</subject><subject>self‐repair</subject><subject>structure</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMFKxDAQhoMouK4efIOAJw_dTZomaW_KslVhwYuCt5A0E81S25psEW8-gs_okxi3Xp3L8MP3z8CH0DklC5pm6RwsKOOCHaAZLQTJclHxQzQrJReZ5OXTMTqJcUsIFQVjM3RVB93sxgBYdxYHGLQP2HdYY-P7788v38XBB7A4QutSfgHd-u4Zx10Y971TdOR0G-Hsb8_RY71-WN1mm_ubu9X1JmsYy1kmpTMSCim5cdY0ltuiIowJMNIUpTFG07KABqysLBhIUQjHSUWZ0KS0ms3RxXR3CP3bCHGntv0YuvRS5YKWeZ6TnCfqcqKa0McYwKkh-FcdPhQl6leQSoLUXlBilxP77lv4-B9Udb2eGj9GMml-</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Hone, Timothy</creator><creator>Kelehan, Sarah</creator><creator>Taylor, David</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid></search><sort><creationdate>202112</creationdate><title>Fracture and repair in a bio‐inspired self‐healing structure</title><author>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bending</topic><topic>biomimetic</topic><topic>Cellular structure</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Damage</topic><topic>Deformation effects</topic><topic>Energy absorption</topic><topic>failure</topic><topic>Finite element method</topic><topic>Healing</topic><topic>Mechanical properties</topic><topic>ovalization</topic><topic>Repair</topic><topic>self‐healing</topic><topic>self‐repair</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Kelehan, Sarah</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hone, Timothy</au><au>Kelehan, Sarah</au><au>Taylor, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture and repair in a bio‐inspired self‐healing structure</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2021-12</date><risdate>2021</risdate><volume>44</volume><issue>12</issue><spage>3373</spage><epage>3383</epage><pages>3373-3383</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems. Highlights Definition of terms: self‐healing material, self‐healing structure, and self‐healing system. Creation of a self‐healing structure inspired by plants. Testing shows very good self‐healing capability.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13563</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2021-12, Vol.44 (12), p.3373-3383
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2618222025
source Wiley Online Library Journals Frontfile Complete
subjects bending
biomimetic
Cellular structure
Channels
Computer simulation
Damage
Deformation effects
Energy absorption
failure
Finite element method
Healing
Mechanical properties
ovalization
Repair
self‐healing
self‐repair
structure
title Fracture and repair in a bio‐inspired self‐healing structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20and%20repair%20in%20a%20bio%E2%80%90inspired%20self%E2%80%90healing%20structure&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Hone,%20Timothy&rft.date=2021-12&rft.volume=44&rft.issue=12&rft.spage=3373&rft.epage=3383&rft.pages=3373-3383&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13563&rft_dat=%3Cproquest_cross%3E2618222025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618222025&rft_id=info:pmid/&rfr_iscdi=true