Fracture and repair in a bio‐inspired self‐healing structure
Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing a...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2021-12, Vol.44 (12), p.3373-3383 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3383 |
---|---|
container_issue | 12 |
container_start_page | 3373 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 44 |
creator | Hone, Timothy Kelehan, Sarah Taylor, David |
description | Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems.
Highlights
Definition of terms: self‐healing material, self‐healing structure, and self‐healing system.
Creation of a self‐healing structure inspired by plants.
Testing shows very good self‐healing capability. |
doi_str_mv | 10.1111/ffe.13563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618222025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618222025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4efIOAJw_dTZomaW_KslVhwYuCt5A0E81S25psEW8-gs_okxi3Xp3L8MP3z8CH0DklC5pm6RwsKOOCHaAZLQTJclHxQzQrJReZ5OXTMTqJcUsIFQVjM3RVB93sxgBYdxYHGLQP2HdYY-P7788v38XBB7A4QutSfgHd-u4Zx10Y971TdOR0G-Hsb8_RY71-WN1mm_ubu9X1JmsYy1kmpTMSCim5cdY0ltuiIowJMNIUpTFG07KABqysLBhIUQjHSUWZ0KS0ms3RxXR3CP3bCHGntv0YuvRS5YKWeZ6TnCfqcqKa0McYwKkh-FcdPhQl6leQSoLUXlBilxP77lv4-B9Udb2eGj9GMml-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618222025</pqid></control><display><type>article</type><title>Fracture and repair in a bio‐inspired self‐healing structure</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</creator><creatorcontrib>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</creatorcontrib><description>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems.
Highlights
Definition of terms: self‐healing material, self‐healing structure, and self‐healing system.
Creation of a self‐healing structure inspired by plants.
Testing shows very good self‐healing capability.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13563</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>bending ; biomimetic ; Cellular structure ; Channels ; Computer simulation ; Damage ; Deformation effects ; Energy absorption ; failure ; Finite element method ; Healing ; Mechanical properties ; ovalization ; Repair ; self‐healing ; self‐repair ; structure</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2021-12, Vol.44 (12), p.3373-3383</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</citedby><cites>FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</cites><orcidid>0000-0002-5470-2062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13563$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13563$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Kelehan, Sarah</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><title>Fracture and repair in a bio‐inspired self‐healing structure</title><title>Fatigue & fracture of engineering materials & structures</title><description>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems.
Highlights
Definition of terms: self‐healing material, self‐healing structure, and self‐healing system.
Creation of a self‐healing structure inspired by plants.
Testing shows very good self‐healing capability.</description><subject>bending</subject><subject>biomimetic</subject><subject>Cellular structure</subject><subject>Channels</subject><subject>Computer simulation</subject><subject>Damage</subject><subject>Deformation effects</subject><subject>Energy absorption</subject><subject>failure</subject><subject>Finite element method</subject><subject>Healing</subject><subject>Mechanical properties</subject><subject>ovalization</subject><subject>Repair</subject><subject>self‐healing</subject><subject>self‐repair</subject><subject>structure</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kMFKxDAQhoMouK4efIOAJw_dTZomaW_KslVhwYuCt5A0E81S25psEW8-gs_okxi3Xp3L8MP3z8CH0DklC5pm6RwsKOOCHaAZLQTJclHxQzQrJReZ5OXTMTqJcUsIFQVjM3RVB93sxgBYdxYHGLQP2HdYY-P7788v38XBB7A4QutSfgHd-u4Zx10Y971TdOR0G-Hsb8_RY71-WN1mm_ubu9X1JmsYy1kmpTMSCim5cdY0ltuiIowJMNIUpTFG07KABqysLBhIUQjHSUWZ0KS0ms3RxXR3CP3bCHGntv0YuvRS5YKWeZ6TnCfqcqKa0McYwKkh-FcdPhQl6leQSoLUXlBilxP77lv4-B9Udb2eGj9GMml-</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Hone, Timothy</creator><creator>Kelehan, Sarah</creator><creator>Taylor, David</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid></search><sort><creationdate>202112</creationdate><title>Fracture and repair in a bio‐inspired self‐healing structure</title><author>Hone, Timothy ; Kelehan, Sarah ; Taylor, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-77fb7e4775bfdbcd5d490336eb7b48bbba184eced79debeba166f509136a08da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bending</topic><topic>biomimetic</topic><topic>Cellular structure</topic><topic>Channels</topic><topic>Computer simulation</topic><topic>Damage</topic><topic>Deformation effects</topic><topic>Energy absorption</topic><topic>failure</topic><topic>Finite element method</topic><topic>Healing</topic><topic>Mechanical properties</topic><topic>ovalization</topic><topic>Repair</topic><topic>self‐healing</topic><topic>self‐repair</topic><topic>structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hone, Timothy</creatorcontrib><creatorcontrib>Kelehan, Sarah</creatorcontrib><creatorcontrib>Taylor, David</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hone, Timothy</au><au>Kelehan, Sarah</au><au>Taylor, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture and repair in a bio‐inspired self‐healing structure</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2021-12</date><risdate>2021</risdate><volume>44</volume><issue>12</issue><spage>3373</spage><epage>3383</epage><pages>3373-3383</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>Many self‐healing materials have been developed, but very few self‐healing structures. We designed a structure in the form of a cylinder required to resist bending. Taking inspiration from plant stems, it has a cellular structure including longitudinal vascular channels for the delivery of healing agents. The structure was found to be capable of absorbing energy effectively, by deformation and fracture of cell walls. The introduction of healing agents (a two‐part liquid adhesive) into the vascular channels allowed fractured cell walls to be repaired. The resulting structure was capable of near‐perfect self‐healing, restoring its original mechanical properties even after significant damage. A computer simulation (finite element analysis) successfully predicted the early‐stage deformation and the initiation of damage. We advocate this structure‐level approach as a more appropriate way to introduce self‐repair into engineering systems.
Highlights
Definition of terms: self‐healing material, self‐healing structure, and self‐healing system.
Creation of a self‐healing structure inspired by plants.
Testing shows very good self‐healing capability.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13563</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5470-2062</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2021-12, Vol.44 (12), p.3373-3383 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2618222025 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | bending biomimetic Cellular structure Channels Computer simulation Damage Deformation effects Energy absorption failure Finite element method Healing Mechanical properties ovalization Repair self‐healing self‐repair structure |
title | Fracture and repair in a bio‐inspired self‐healing structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A11%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20and%20repair%20in%20a%20bio%E2%80%90inspired%20self%E2%80%90healing%20structure&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=Hone,%20Timothy&rft.date=2021-12&rft.volume=44&rft.issue=12&rft.spage=3373&rft.epage=3383&rft.pages=3373-3383&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13563&rft_dat=%3Cproquest_cross%3E2618222025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618222025&rft_id=info:pmid/&rfr_iscdi=true |