Approximating the distance to monotonicity of Boolean functions
We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies o...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2022-03, Vol.60 (2), p.233-260 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Random structures & algorithms |
container_volume | 60 |
creator | Pallavoor, Ramesh Krishnan S. Raskhodnikova, Sofya Waingarten, Erik |
description | We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ>0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta. |
doi_str_mv | 10.1002/rsa.21029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618213862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618213862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsL3yDgysW0yck0k6ykFm9QELysQyYXndImNUnRvr2j49bVOYvvP5cPoXNKJpQQmKasJ0AJyAM0okSKCmoqDn_6GiopGByjk5xXhJCGARuhq_l2m-JXt9GlC2-4vDtsu1x0MA6XiDcxxBJDZ7qyx9Hj6xjXTgfsd8GULoZ8io68Xmd39lfH6PX25mVxXy0f7x4W82VlQDayambag9We1QyIaGEGvrHAoeFcEO9965paWsktNcbNatC2boWlXrfGcwaWjdHFMLe_9mPnclGruEuhX6mAUwGUCQ49dTlQJsWck_Nqm_rX0l5Ron78qN6P-vXTs9OB_ezWbv8_qJ6e50PiG_MrZ1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618213862</pqid></control><display><type>article</type><title>Approximating the distance to monotonicity of Boolean functions</title><source>Access via Wiley Online Library</source><creator>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</creator><creatorcontrib>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</creatorcontrib><description>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ>0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21029</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Algorithms ; analysis of Boolean functions ; Approximation ; Boolean algebra ; Boolean functions ; Lower bounds ; Mathematical analysis ; property testing ; Queries ; sublinear algorithms ; tolerant and erasure‐resilient testing</subject><ispartof>Random structures & algorithms, 2022-03, Vol.60 (2), p.233-260</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</citedby><cites>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pallavoor, Ramesh Krishnan S.</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><creatorcontrib>Waingarten, Erik</creatorcontrib><title>Approximating the distance to monotonicity of Boolean functions</title><title>Random structures & algorithms</title><description>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ>0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</description><subject>Algorithms</subject><subject>analysis of Boolean functions</subject><subject>Approximation</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>property testing</subject><subject>Queries</subject><subject>sublinear algorithms</subject><subject>tolerant and erasure‐resilient testing</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsL3yDgysW0yck0k6ykFm9QELysQyYXndImNUnRvr2j49bVOYvvP5cPoXNKJpQQmKasJ0AJyAM0okSKCmoqDn_6GiopGByjk5xXhJCGARuhq_l2m-JXt9GlC2-4vDtsu1x0MA6XiDcxxBJDZ7qyx9Hj6xjXTgfsd8GULoZ8io68Xmd39lfH6PX25mVxXy0f7x4W82VlQDayambag9We1QyIaGEGvrHAoeFcEO9965paWsktNcbNatC2boWlXrfGcwaWjdHFMLe_9mPnclGruEuhX6mAUwGUCQ49dTlQJsWck_Nqm_rX0l5Ron78qN6P-vXTs9OB_ezWbv8_qJ6e50PiG_MrZ1s</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Pallavoor, Ramesh Krishnan S.</creator><creator>Raskhodnikova, Sofya</creator><creator>Waingarten, Erik</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202203</creationdate><title>Approximating the distance to monotonicity of Boolean functions</title><author>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>analysis of Boolean functions</topic><topic>Approximation</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>property testing</topic><topic>Queries</topic><topic>sublinear algorithms</topic><topic>tolerant and erasure‐resilient testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallavoor, Ramesh Krishnan S.</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><creatorcontrib>Waingarten, Erik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures & algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallavoor, Ramesh Krishnan S.</au><au>Raskhodnikova, Sofya</au><au>Waingarten, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the distance to monotonicity of Boolean functions</atitle><jtitle>Random structures & algorithms</jtitle><date>2022-03</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>233</spage><epage>260</epage><pages>233-260</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ>0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/rsa.21029</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1042-9832 |
ispartof | Random structures & algorithms, 2022-03, Vol.60 (2), p.233-260 |
issn | 1042-9832 1098-2418 |
language | eng |
recordid | cdi_proquest_journals_2618213862 |
source | Access via Wiley Online Library |
subjects | Algorithms analysis of Boolean functions Approximation Boolean algebra Boolean functions Lower bounds Mathematical analysis property testing Queries sublinear algorithms tolerant and erasure‐resilient testing |
title | Approximating the distance to monotonicity of Boolean functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20distance%20to%20monotonicity%20of%20Boolean%20functions&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Pallavoor,%20Ramesh%20Krishnan%20S.&rft.date=2022-03&rft.volume=60&rft.issue=2&rft.spage=233&rft.epage=260&rft.pages=233-260&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21029&rft_dat=%3Cproquest_cross%3E2618213862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618213862&rft_id=info:pmid/&rfr_iscdi=true |