Approximating the distance to monotonicity of Boolean functions

We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2022-03, Vol.60 (2), p.233-260
Hauptverfasser: Pallavoor, Ramesh Krishnan S., Raskhodnikova, Sofya, Waingarten, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 233
container_title Random structures & algorithms
container_volume 60
creator Pallavoor, Ramesh Krishnan S.
Raskhodnikova, Sofya
Waingarten, Erik
description We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ>0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.
doi_str_mv 10.1002/rsa.21029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618213862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618213862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsL3yDgysW0yck0k6ykFm9QELysQyYXndImNUnRvr2j49bVOYvvP5cPoXNKJpQQmKasJ0AJyAM0okSKCmoqDn_6GiopGByjk5xXhJCGARuhq_l2m-JXt9GlC2-4vDtsu1x0MA6XiDcxxBJDZ7qyx9Hj6xjXTgfsd8GULoZ8io68Xmd39lfH6PX25mVxXy0f7x4W82VlQDayambag9We1QyIaGEGvrHAoeFcEO9965paWsktNcbNatC2boWlXrfGcwaWjdHFMLe_9mPnclGruEuhX6mAUwGUCQ49dTlQJsWck_Nqm_rX0l5Ron78qN6P-vXTs9OB_ezWbv8_qJ6e50PiG_MrZ1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618213862</pqid></control><display><type>article</type><title>Approximating the distance to monotonicity of Boolean functions</title><source>Access via Wiley Online Library</source><creator>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</creator><creatorcontrib>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</creatorcontrib><description>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ&gt;0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><identifier>DOI: 10.1002/rsa.21029</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; analysis of Boolean functions ; Approximation ; Boolean algebra ; Boolean functions ; Lower bounds ; Mathematical analysis ; property testing ; Queries ; sublinear algorithms ; tolerant and erasure‐resilient testing</subject><ispartof>Random structures &amp; algorithms, 2022-03, Vol.60 (2), p.233-260</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</citedby><cites>FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frsa.21029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frsa.21029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pallavoor, Ramesh Krishnan S.</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><creatorcontrib>Waingarten, Erik</creatorcontrib><title>Approximating the distance to monotonicity of Boolean functions</title><title>Random structures &amp; algorithms</title><description>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ&gt;0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</description><subject>Algorithms</subject><subject>analysis of Boolean functions</subject><subject>Approximation</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>property testing</subject><subject>Queries</subject><subject>sublinear algorithms</subject><subject>tolerant and erasure‐resilient testing</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsL3yDgysW0yck0k6ykFm9QELysQyYXndImNUnRvr2j49bVOYvvP5cPoXNKJpQQmKasJ0AJyAM0okSKCmoqDn_6GiopGByjk5xXhJCGARuhq_l2m-JXt9GlC2-4vDtsu1x0MA6XiDcxxBJDZ7qyx9Hj6xjXTgfsd8GULoZ8io68Xmd39lfH6PX25mVxXy0f7x4W82VlQDayambag9We1QyIaGEGvrHAoeFcEO9965paWsktNcbNatC2boWlXrfGcwaWjdHFMLe_9mPnclGruEuhX6mAUwGUCQ49dTlQJsWck_Nqm_rX0l5Ron78qN6P-vXTs9OB_ezWbv8_qJ6e50PiG_MrZ1s</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Pallavoor, Ramesh Krishnan S.</creator><creator>Raskhodnikova, Sofya</creator><creator>Waingarten, Erik</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202203</creationdate><title>Approximating the distance to monotonicity of Boolean functions</title><author>Pallavoor, Ramesh Krishnan S. ; Raskhodnikova, Sofya ; Waingarten, Erik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-75af2daf343208b252f7d26276680fffbe749d96d1cce542ad4b8d1fabcf632d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>analysis of Boolean functions</topic><topic>Approximation</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>property testing</topic><topic>Queries</topic><topic>sublinear algorithms</topic><topic>tolerant and erasure‐resilient testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pallavoor, Ramesh Krishnan S.</creatorcontrib><creatorcontrib>Raskhodnikova, Sofya</creatorcontrib><creatorcontrib>Waingarten, Erik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pallavoor, Ramesh Krishnan S.</au><au>Raskhodnikova, Sofya</au><au>Waingarten, Erik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the distance to monotonicity of Boolean functions</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2022-03</date><risdate>2022</risdate><volume>60</volume><issue>2</issue><spage>233</spage><epage>260</epage><pages>233-260</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>We design a nonadaptive algorithm that, given oracle access to a function f:{0,1} n→{0,1} which is α‐far from monotone, makes poly(n,1/α) queries and returns an estimate that, with high probability, is an Õ(n)‐approximation to the distance of f to monotonicity. The analysis of our algorithm relies on an improvement to the directed isoperimetric inequality of Khot, Minzer, and Safra (SIAM J. Comput., 2018). Furthermore, we rule out a poly(n,1/α)‐query nonadaptive algorithm that approximates the distance to monotonicity significantly better by showing that, for all constant κ&gt;0, every nonadaptive n1/2−κ‐approximation algorithm for this problem requires 2nκ queries. This answers a question of Seshadhri (Property Testing Review, 2014) for the case of nonadaptive algorithms. We obtain our lower bound by proving an analogous bound for erasure‐resilient (and tolerant) testers. Our method also yields the same lower bounds for unateness and being a k‐junta.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/rsa.21029</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2022-03, Vol.60 (2), p.233-260
issn 1042-9832
1098-2418
language eng
recordid cdi_proquest_journals_2618213862
source Access via Wiley Online Library
subjects Algorithms
analysis of Boolean functions
Approximation
Boolean algebra
Boolean functions
Lower bounds
Mathematical analysis
property testing
Queries
sublinear algorithms
tolerant and erasure‐resilient testing
title Approximating the distance to monotonicity of Boolean functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20distance%20to%20monotonicity%20of%20Boolean%20functions&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Pallavoor,%20Ramesh%20Krishnan%20S.&rft.date=2022-03&rft.volume=60&rft.issue=2&rft.spage=233&rft.epage=260&rft.pages=233-260&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/10.1002/rsa.21029&rft_dat=%3Cproquest_cross%3E2618213862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618213862&rft_id=info:pmid/&rfr_iscdi=true