Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray
•Ab-initio informed design of a CoCrFeNi-based HEAs with simultaneous addition of Mo and Nb.•Additive manufacturing of a HEA via cold-spraying develops recrystallized nano-grains.•Excellent mechanical properties under compression achieving 1745 MPa and 2622 MPa of yield and ultimate stress. [Display...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-02, Vol.893, p.162309, Article 162309 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 162309 |
container_title | Journal of alloys and compounds |
container_volume | 893 |
creator | Rojas, David Funes Li, Haoyang Orhan, Okan K. Shao, Chenwei Hogan, James D. Ponga, Mauricio |
description | •Ab-initio informed design of a CoCrFeNi-based HEAs with simultaneous addition of Mo and Nb.•Additive manufacturing of a HEA via cold-spraying develops recrystallized nano-grains.•Excellent mechanical properties under compression achieving 1745 MPa and 2622 MPa of yield and ultimate stress.
[Display omitted]
We present a combined experimental and computational investigation of the mechanical properties of a CoCrFe0.75NiMo0.3Nb0.125 (composition in molar ratio) high-entropy alloy additively manufactured via cold spray. We find that the sprayed alloy exhibits extraordinary mechanical properties under compression, reaching yield stress of ~1745 MPa, ultimate stress of ~2622 MPa, and a maximum strain at failure of ~9%. These exceptional mechanical properties are the result of four independent hardening mechanisms. First, using ab initio simulations, we find that non-equiatomic compositions increase the enthalpy of mixing, promoting better solubility of solute Mo and Nb atoms while simultaneously preserving the electronegativity of the base alloy. The higher solubility results in solid-solution hardening and nanosized precipitate formation, promoting additional hardening. These effects are confirmed in the experimental characterization of the manufactured HEA, where nanosized precipitates of ~226 ± 65 nm in size are identified. Additional hardening effects are associated with the manufacturing process, where the high-velocity impacts of the microparticles promote dynamic recrystallization through dislocation emission and grain refinement. To understand the dynamic recrystallization of particles, high-velocity impact simulations using molecular dynamics are performed. We find that when particles reach a critical impact velocity ( ~600–800 m ⋅ s−1), the dislocation density reaches a maximum, and grain refinement is maximized. The decaying wave pressures developed during the impact generate gradual refinement levels, leading to heterogeneous microstructures combining nano and micro grains, which was later confirmed experimentally using electron backscatter diffraction. These subtle atomic and microstructural features result in outstanding experimentally evaluated yield and ultimate stresses compared to other high-entropy alloys with similar compositions. |
doi_str_mv | 10.1016/j.jallcom.2021.162309 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618164383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821037191</els_id><sourcerecordid>2618164383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c97ba07eb0a60b89e34cb0af59cec7ee2c8f8cbdc14c9d704e6f749e35eb9e7d3</originalsourceid><addsrcrecordid>eNqFkMFu2zAMhoViA5plfYQCAna2J1m2JZ2KIVi3AWl32c6CTNGNDMfKJDuAj33zKkjvu5AE8fMn-RFyz1nJGW-_DuVgxxHCsaxYxUveVoLpG7LhSoqiblv9gWyYrppCCaVuyaeUBsYY14JvyOsTwsFOHuxI7eTo0UMMaY4LzEvMvVMMJ4yzx0RDTy3dhV18RFbK5tk_BVaK5y5fUTX04F8OBU5z1q80nxNydM7P_ozjSo92Wnp78URHz95SCKMr0ina9TP52Nsx4d173pK_j9__7H4W-98_fu2-7QsQQs4FaNlZJrFjtmWd0ihqyHXfaECQiBWoXkHngNegnWQ1tr2ss6zBTqN0Yku-XH3zS_8WTLMZwhKnvNJULVe8rYUSWdVcVRcMKWJvTtEfbVwNZ-ZC2wzmnba50DZX2nnu4TqH-YWzx2gSeJwAnY8Is3HB_8fhDRhNjOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618164383</pqid></control><display><type>article</type><title>Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rojas, David Funes ; Li, Haoyang ; Orhan, Okan K. ; Shao, Chenwei ; Hogan, James D. ; Ponga, Mauricio</creator><creatorcontrib>Rojas, David Funes ; Li, Haoyang ; Orhan, Okan K. ; Shao, Chenwei ; Hogan, James D. ; Ponga, Mauricio</creatorcontrib><description>•Ab-initio informed design of a CoCrFeNi-based HEAs with simultaneous addition of Mo and Nb.•Additive manufacturing of a HEA via cold-spraying develops recrystallized nano-grains.•Excellent mechanical properties under compression achieving 1745 MPa and 2622 MPa of yield and ultimate stress.
[Display omitted]
We present a combined experimental and computational investigation of the mechanical properties of a CoCrFe0.75NiMo0.3Nb0.125 (composition in molar ratio) high-entropy alloy additively manufactured via cold spray. We find that the sprayed alloy exhibits extraordinary mechanical properties under compression, reaching yield stress of ~1745 MPa, ultimate stress of ~2622 MPa, and a maximum strain at failure of ~9%. These exceptional mechanical properties are the result of four independent hardening mechanisms. First, using ab initio simulations, we find that non-equiatomic compositions increase the enthalpy of mixing, promoting better solubility of solute Mo and Nb atoms while simultaneously preserving the electronegativity of the base alloy. The higher solubility results in solid-solution hardening and nanosized precipitate formation, promoting additional hardening. These effects are confirmed in the experimental characterization of the manufactured HEA, where nanosized precipitates of ~226 ± 65 nm in size are identified. Additional hardening effects are associated with the manufacturing process, where the high-velocity impacts of the microparticles promote dynamic recrystallization through dislocation emission and grain refinement. To understand the dynamic recrystallization of particles, high-velocity impact simulations using molecular dynamics are performed. We find that when particles reach a critical impact velocity ( ~600–800 m ⋅ s−1), the dislocation density reaches a maximum, and grain refinement is maximized. The decaying wave pressures developed during the impact generate gradual refinement levels, leading to heterogeneous microstructures combining nano and micro grains, which was later confirmed experimentally using electron backscatter diffraction. These subtle atomic and microstructural features result in outstanding experimentally evaluated yield and ultimate stresses compared to other high-entropy alloys with similar compositions.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.162309</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additive manufacturing ; Alloying additive ; Alloys ; CoCrFe0.75NiMo0.3Nb0.125 ; Cold-spray ; Composition ; Dislocation density ; Dynamic recrystallization ; Electron backscatter diffraction ; Electronegativity ; Enthalpy ; Entropy ; Grain refinement ; High entropy alloys ; Impact velocity ; Mechanical properties ; Microparticles ; Microstructure ; Molecular dynamics ; Molybdenum ; Precipitates ; Solid solutions ; Solubility ; Solution strengthening ; Strain ; Tensile stress ; Yield stress</subject><ispartof>Journal of alloys and compounds, 2022-02, Vol.893, p.162309, Article 162309</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Feb 10, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c97ba07eb0a60b89e34cb0af59cec7ee2c8f8cbdc14c9d704e6f749e35eb9e7d3</citedby><cites>FETCH-LOGICAL-c337t-c97ba07eb0a60b89e34cb0af59cec7ee2c8f8cbdc14c9d704e6f749e35eb9e7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.162309$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Rojas, David Funes</creatorcontrib><creatorcontrib>Li, Haoyang</creatorcontrib><creatorcontrib>Orhan, Okan K.</creatorcontrib><creatorcontrib>Shao, Chenwei</creatorcontrib><creatorcontrib>Hogan, James D.</creatorcontrib><creatorcontrib>Ponga, Mauricio</creatorcontrib><title>Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray</title><title>Journal of alloys and compounds</title><description>•Ab-initio informed design of a CoCrFeNi-based HEAs with simultaneous addition of Mo and Nb.•Additive manufacturing of a HEA via cold-spraying develops recrystallized nano-grains.•Excellent mechanical properties under compression achieving 1745 MPa and 2622 MPa of yield and ultimate stress.
[Display omitted]
We present a combined experimental and computational investigation of the mechanical properties of a CoCrFe0.75NiMo0.3Nb0.125 (composition in molar ratio) high-entropy alloy additively manufactured via cold spray. We find that the sprayed alloy exhibits extraordinary mechanical properties under compression, reaching yield stress of ~1745 MPa, ultimate stress of ~2622 MPa, and a maximum strain at failure of ~9%. These exceptional mechanical properties are the result of four independent hardening mechanisms. First, using ab initio simulations, we find that non-equiatomic compositions increase the enthalpy of mixing, promoting better solubility of solute Mo and Nb atoms while simultaneously preserving the electronegativity of the base alloy. The higher solubility results in solid-solution hardening and nanosized precipitate formation, promoting additional hardening. These effects are confirmed in the experimental characterization of the manufactured HEA, where nanosized precipitates of ~226 ± 65 nm in size are identified. Additional hardening effects are associated with the manufacturing process, where the high-velocity impacts of the microparticles promote dynamic recrystallization through dislocation emission and grain refinement. To understand the dynamic recrystallization of particles, high-velocity impact simulations using molecular dynamics are performed. We find that when particles reach a critical impact velocity ( ~600–800 m ⋅ s−1), the dislocation density reaches a maximum, and grain refinement is maximized. The decaying wave pressures developed during the impact generate gradual refinement levels, leading to heterogeneous microstructures combining nano and micro grains, which was later confirmed experimentally using electron backscatter diffraction. These subtle atomic and microstructural features result in outstanding experimentally evaluated yield and ultimate stresses compared to other high-entropy alloys with similar compositions.</description><subject>Additive manufacturing</subject><subject>Alloying additive</subject><subject>Alloys</subject><subject>CoCrFe0.75NiMo0.3Nb0.125</subject><subject>Cold-spray</subject><subject>Composition</subject><subject>Dislocation density</subject><subject>Dynamic recrystallization</subject><subject>Electron backscatter diffraction</subject><subject>Electronegativity</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Grain refinement</subject><subject>High entropy alloys</subject><subject>Impact velocity</subject><subject>Mechanical properties</subject><subject>Microparticles</subject><subject>Microstructure</subject><subject>Molecular dynamics</subject><subject>Molybdenum</subject><subject>Precipitates</subject><subject>Solid solutions</subject><subject>Solubility</subject><subject>Solution strengthening</subject><subject>Strain</subject><subject>Tensile stress</subject><subject>Yield stress</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMFu2zAMhoViA5plfYQCAna2J1m2JZ2KIVi3AWl32c6CTNGNDMfKJDuAj33zKkjvu5AE8fMn-RFyz1nJGW-_DuVgxxHCsaxYxUveVoLpG7LhSoqiblv9gWyYrppCCaVuyaeUBsYY14JvyOsTwsFOHuxI7eTo0UMMaY4LzEvMvVMMJ4yzx0RDTy3dhV18RFbK5tk_BVaK5y5fUTX04F8OBU5z1q80nxNydM7P_ozjSo92Wnp78URHz95SCKMr0ina9TP52Nsx4d173pK_j9__7H4W-98_fu2-7QsQQs4FaNlZJrFjtmWd0ihqyHXfaECQiBWoXkHngNegnWQ1tr2ss6zBTqN0Yku-XH3zS_8WTLMZwhKnvNJULVe8rYUSWdVcVRcMKWJvTtEfbVwNZ-ZC2wzmnba50DZX2nnu4TqH-YWzx2gSeJwAnY8Is3HB_8fhDRhNjOQ</recordid><startdate>20220210</startdate><enddate>20220210</enddate><creator>Rojas, David Funes</creator><creator>Li, Haoyang</creator><creator>Orhan, Okan K.</creator><creator>Shao, Chenwei</creator><creator>Hogan, James D.</creator><creator>Ponga, Mauricio</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220210</creationdate><title>Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray</title><author>Rojas, David Funes ; Li, Haoyang ; Orhan, Okan K. ; Shao, Chenwei ; Hogan, James D. ; Ponga, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c97ba07eb0a60b89e34cb0af59cec7ee2c8f8cbdc14c9d704e6f749e35eb9e7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Alloying additive</topic><topic>Alloys</topic><topic>CoCrFe0.75NiMo0.3Nb0.125</topic><topic>Cold-spray</topic><topic>Composition</topic><topic>Dislocation density</topic><topic>Dynamic recrystallization</topic><topic>Electron backscatter diffraction</topic><topic>Electronegativity</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Grain refinement</topic><topic>High entropy alloys</topic><topic>Impact velocity</topic><topic>Mechanical properties</topic><topic>Microparticles</topic><topic>Microstructure</topic><topic>Molecular dynamics</topic><topic>Molybdenum</topic><topic>Precipitates</topic><topic>Solid solutions</topic><topic>Solubility</topic><topic>Solution strengthening</topic><topic>Strain</topic><topic>Tensile stress</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas, David Funes</creatorcontrib><creatorcontrib>Li, Haoyang</creatorcontrib><creatorcontrib>Orhan, Okan K.</creatorcontrib><creatorcontrib>Shao, Chenwei</creatorcontrib><creatorcontrib>Hogan, James D.</creatorcontrib><creatorcontrib>Ponga, Mauricio</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas, David Funes</au><au>Li, Haoyang</au><au>Orhan, Okan K.</au><au>Shao, Chenwei</au><au>Hogan, James D.</au><au>Ponga, Mauricio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-02-10</date><risdate>2022</risdate><volume>893</volume><spage>162309</spage><pages>162309-</pages><artnum>162309</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Ab-initio informed design of a CoCrFeNi-based HEAs with simultaneous addition of Mo and Nb.•Additive manufacturing of a HEA via cold-spraying develops recrystallized nano-grains.•Excellent mechanical properties under compression achieving 1745 MPa and 2622 MPa of yield and ultimate stress.
[Display omitted]
We present a combined experimental and computational investigation of the mechanical properties of a CoCrFe0.75NiMo0.3Nb0.125 (composition in molar ratio) high-entropy alloy additively manufactured via cold spray. We find that the sprayed alloy exhibits extraordinary mechanical properties under compression, reaching yield stress of ~1745 MPa, ultimate stress of ~2622 MPa, and a maximum strain at failure of ~9%. These exceptional mechanical properties are the result of four independent hardening mechanisms. First, using ab initio simulations, we find that non-equiatomic compositions increase the enthalpy of mixing, promoting better solubility of solute Mo and Nb atoms while simultaneously preserving the electronegativity of the base alloy. The higher solubility results in solid-solution hardening and nanosized precipitate formation, promoting additional hardening. These effects are confirmed in the experimental characterization of the manufactured HEA, where nanosized precipitates of ~226 ± 65 nm in size are identified. Additional hardening effects are associated with the manufacturing process, where the high-velocity impacts of the microparticles promote dynamic recrystallization through dislocation emission and grain refinement. To understand the dynamic recrystallization of particles, high-velocity impact simulations using molecular dynamics are performed. We find that when particles reach a critical impact velocity ( ~600–800 m ⋅ s−1), the dislocation density reaches a maximum, and grain refinement is maximized. The decaying wave pressures developed during the impact generate gradual refinement levels, leading to heterogeneous microstructures combining nano and micro grains, which was later confirmed experimentally using electron backscatter diffraction. These subtle atomic and microstructural features result in outstanding experimentally evaluated yield and ultimate stresses compared to other high-entropy alloys with similar compositions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.162309</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-02, Vol.893, p.162309, Article 162309 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2618164383 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Additive manufacturing Alloying additive Alloys CoCrFe0.75NiMo0.3Nb0.125 Cold-spray Composition Dislocation density Dynamic recrystallization Electron backscatter diffraction Electronegativity Enthalpy Entropy Grain refinement High entropy alloys Impact velocity Mechanical properties Microparticles Microstructure Molecular dynamics Molybdenum Precipitates Solid solutions Solubility Solution strengthening Strain Tensile stress Yield stress |
title | Mechanical and microstructural properties of a CoCrFe0.75NiMo0.3Nb0.125 high-entropy alloy additively manufactured via cold-spray |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A04%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20microstructural%20properties%20of%20a%20CoCrFe0.75NiMo0.3Nb0.125%20high-entropy%20alloy%20additively%20manufactured%20via%20cold-spray&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Rojas,%20David%20Funes&rft.date=2022-02-10&rft.volume=893&rft.spage=162309&rft.pages=162309-&rft.artnum=162309&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.162309&rft_dat=%3Cproquest_cross%3E2618164383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618164383&rft_id=info:pmid/&rft_els_id=S0925838821037191&rfr_iscdi=true |