Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation
Uniaxial hot tensile tests were carried out in the RD, 45°, and TD directions of cold-rolled Ti-6Al-4V alloy sheets. At 973 K-0.1 s −1 , it shows apparent mechanical and fracture anisotropy. Increasing temperature or decreasing strain rate can reduce the anisotropic behavior and significantly improv...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2022, Vol.57 (1), p.651-670 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 1 |
container_start_page | 651 |
container_title | Journal of materials science |
container_volume | 57 |
creator | Gao, Song He, Tonggui Li, Qihan Sun, Yingli Sang, Ye Wu, Yuhang Ying, Liang |
description | Uniaxial hot tensile tests were carried out in the RD, 45°, and TD directions of cold-rolled Ti-6Al-4V alloy sheets. At 973 K-0.1 s
−1
, it shows apparent mechanical and fracture anisotropy. Increasing temperature or decreasing strain rate can reduce the anisotropic behavior and significantly improve its forming quality. The SEM-EBSD result indicates that there is a T-type texture in the initial microstructure. The yield anisotropy is closely related to the distribution of the Schmid factor caused by the texture. In the RD and 45° loading paths, the Schmid factors are large, and the basal and prismatic slip is easy to be activated. It is difficult to activate these two slip systems in the TD loading direction. Under high-temperature loading conditions, the rotation of grains leads to different orientation dispersion, which further affects the phase transformation and softening behavior. The primary mechanism affecting the softening behavior is dynamic recovery (DRV). In the case of the 45° loading direction, the orientation dispersion is the largest. Its DRV and phase transformation behavior is more prominent than the other two loading directions. The loading along 45° direction has the best forming quality, and it can be selected in the processing of Ti-6Al-4V alloy.
Graphical abstract |
doi_str_mv | 10.1007/s10853-021-06569-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2618136364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689160336</galeid><sourcerecordid>A689160336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5ea6858991e8c9931aedb13bbb407ee5579d2b7aa3d6f9f57ae5921536e954d3</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodtN_kBOgp56UKIPS5aOS-hHIBBol17F2B7vKtjWVtKW5t9HrQsll6KDQPM8mhleQq4EvxactzdZcKsV41IwbrRxzL4iG6FbxRrL1Wuy4VxKJhsj3pJ3OT9yznUrxYbAbgk5lhRPoacdHuFniInCMtAZ-yMsoYeJnmoZUwmYaRzpPjCzm1jzncI0xScaFnoMhyMtOFcKyjkhHXCMaYYS4nJB3owwZbz8e2_J_tPH_e0Xdv_w-e52d8965WRhGsFYbZ0TaHvnlAAcOqG6rmt4i6h16wbZtQBqMKMbdQuonRRaGXS6GdSWvF-_rcP-OGMu_jGe01I7emmEFcoo01TqeqUOMKEPy1hXh76eAefQxwXHUN93xjphuKrOlnx4IVSm4K9ygHPO_u7b15esXNk-xZwTjv6UwgzpyQvuf8fk15h8jcn_icnbKqlVyhVeDpj-zf0f6xk8vpR7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618136364</pqid></control><display><type>article</type><title>Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Song ; He, Tonggui ; Li, Qihan ; Sun, Yingli ; Sang, Ye ; Wu, Yuhang ; Ying, Liang</creator><creatorcontrib>Gao, Song ; He, Tonggui ; Li, Qihan ; Sun, Yingli ; Sang, Ye ; Wu, Yuhang ; Ying, Liang</creatorcontrib><description>Uniaxial hot tensile tests were carried out in the RD, 45°, and TD directions of cold-rolled Ti-6Al-4V alloy sheets. At 973 K-0.1 s
−1
, it shows apparent mechanical and fracture anisotropy. Increasing temperature or decreasing strain rate can reduce the anisotropic behavior and significantly improve its forming quality. The SEM-EBSD result indicates that there is a T-type texture in the initial microstructure. The yield anisotropy is closely related to the distribution of the Schmid factor caused by the texture. In the RD and 45° loading paths, the Schmid factors are large, and the basal and prismatic slip is easy to be activated. It is difficult to activate these two slip systems in the TD loading direction. Under high-temperature loading conditions, the rotation of grains leads to different orientation dispersion, which further affects the phase transformation and softening behavior. The primary mechanism affecting the softening behavior is dynamic recovery (DRV). In the case of the 45° loading direction, the orientation dispersion is the largest. Its DRV and phase transformation behavior is more prominent than the other two loading directions. The loading along 45° direction has the best forming quality, and it can be selected in the processing of Ti-6Al-4V alloy.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06569-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Analysis ; Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Corrosion ; Crystallography and Scattering Methods ; Deformation ; Dispersion ; Fractures ; Heat resistant alloys ; High temperature ; Materials Science ; Mechanical properties ; Metal sheets ; Metals & Corrosion ; Phase transitions ; Polymer Sciences ; Slip ; Softening ; Solid Mechanics ; Specialty metals industry ; Strain hardening ; Strain rate ; Tensile tests ; Texture ; Titanium alloys ; Titanium base alloys</subject><ispartof>Journal of materials science, 2022, Vol.57 (1), p.651-670</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2022 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5ea6858991e8c9931aedb13bbb407ee5579d2b7aa3d6f9f57ae5921536e954d3</citedby><cites>FETCH-LOGICAL-c392t-5ea6858991e8c9931aedb13bbb407ee5579d2b7aa3d6f9f57ae5921536e954d3</cites><orcidid>0000-0001-5813-5387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06569-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06569-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Gao, Song</creatorcontrib><creatorcontrib>He, Tonggui</creatorcontrib><creatorcontrib>Li, Qihan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Sang, Ye</creatorcontrib><creatorcontrib>Wu, Yuhang</creatorcontrib><creatorcontrib>Ying, Liang</creatorcontrib><title>Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Uniaxial hot tensile tests were carried out in the RD, 45°, and TD directions of cold-rolled Ti-6Al-4V alloy sheets. At 973 K-0.1 s
−1
, it shows apparent mechanical and fracture anisotropy. Increasing temperature or decreasing strain rate can reduce the anisotropic behavior and significantly improve its forming quality. The SEM-EBSD result indicates that there is a T-type texture in the initial microstructure. The yield anisotropy is closely related to the distribution of the Schmid factor caused by the texture. In the RD and 45° loading paths, the Schmid factors are large, and the basal and prismatic slip is easy to be activated. It is difficult to activate these two slip systems in the TD loading direction. Under high-temperature loading conditions, the rotation of grains leads to different orientation dispersion, which further affects the phase transformation and softening behavior. The primary mechanism affecting the softening behavior is dynamic recovery (DRV). In the case of the 45° loading direction, the orientation dispersion is the largest. Its DRV and phase transformation behavior is more prominent than the other two loading directions. The loading along 45° direction has the best forming quality, and it can be selected in the processing of Ti-6Al-4V alloy.
Graphical abstract</description><subject>Alloys</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Corrosion</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dispersion</subject><subject>Fractures</subject><subject>Heat resistant alloys</subject><subject>High temperature</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metal sheets</subject><subject>Metals & Corrosion</subject><subject>Phase transitions</subject><subject>Polymer Sciences</subject><subject>Slip</subject><subject>Softening</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Strain hardening</subject><subject>Strain rate</subject><subject>Tensile tests</subject><subject>Texture</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhkVpodtN_kBOgp56UKIPS5aOS-hHIBBol17F2B7vKtjWVtKW5t9HrQsll6KDQPM8mhleQq4EvxactzdZcKsV41IwbrRxzL4iG6FbxRrL1Wuy4VxKJhsj3pJ3OT9yznUrxYbAbgk5lhRPoacdHuFniInCMtAZ-yMsoYeJnmoZUwmYaRzpPjCzm1jzncI0xScaFnoMhyMtOFcKyjkhHXCMaYYS4nJB3owwZbz8e2_J_tPH_e0Xdv_w-e52d8965WRhGsFYbZ0TaHvnlAAcOqG6rmt4i6h16wbZtQBqMKMbdQuonRRaGXS6GdSWvF-_rcP-OGMu_jGe01I7emmEFcoo01TqeqUOMKEPy1hXh76eAefQxwXHUN93xjphuKrOlnx4IVSm4K9ygHPO_u7b15esXNk-xZwTjv6UwgzpyQvuf8fk15h8jcn_icnbKqlVyhVeDpj-zf0f6xk8vpR7</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Gao, Song</creator><creator>He, Tonggui</creator><creator>Li, Qihan</creator><creator>Sun, Yingli</creator><creator>Sang, Ye</creator><creator>Wu, Yuhang</creator><creator>Ying, Liang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5813-5387</orcidid></search><sort><creationdate>2022</creationdate><title>Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation</title><author>Gao, Song ; He, Tonggui ; Li, Qihan ; Sun, Yingli ; Sang, Ye ; Wu, Yuhang ; Ying, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5ea6858991e8c9931aedb13bbb407ee5579d2b7aa3d6f9f57ae5921536e954d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Corrosion</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dispersion</topic><topic>Fractures</topic><topic>Heat resistant alloys</topic><topic>High temperature</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metal sheets</topic><topic>Metals & Corrosion</topic><topic>Phase transitions</topic><topic>Polymer Sciences</topic><topic>Slip</topic><topic>Softening</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Strain hardening</topic><topic>Strain rate</topic><topic>Tensile tests</topic><topic>Texture</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Song</creatorcontrib><creatorcontrib>He, Tonggui</creatorcontrib><creatorcontrib>Li, Qihan</creatorcontrib><creatorcontrib>Sun, Yingli</creatorcontrib><creatorcontrib>Sang, Ye</creatorcontrib><creatorcontrib>Wu, Yuhang</creatorcontrib><creatorcontrib>Ying, Liang</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Song</au><au>He, Tonggui</au><au>Li, Qihan</au><au>Sun, Yingli</au><au>Sang, Ye</au><au>Wu, Yuhang</au><au>Ying, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>1</issue><spage>651</spage><epage>670</epage><pages>651-670</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Uniaxial hot tensile tests were carried out in the RD, 45°, and TD directions of cold-rolled Ti-6Al-4V alloy sheets. At 973 K-0.1 s
−1
, it shows apparent mechanical and fracture anisotropy. Increasing temperature or decreasing strain rate can reduce the anisotropic behavior and significantly improve its forming quality. The SEM-EBSD result indicates that there is a T-type texture in the initial microstructure. The yield anisotropy is closely related to the distribution of the Schmid factor caused by the texture. In the RD and 45° loading paths, the Schmid factors are large, and the basal and prismatic slip is easy to be activated. It is difficult to activate these two slip systems in the TD loading direction. Under high-temperature loading conditions, the rotation of grains leads to different orientation dispersion, which further affects the phase transformation and softening behavior. The primary mechanism affecting the softening behavior is dynamic recovery (DRV). In the case of the 45° loading direction, the orientation dispersion is the largest. Its DRV and phase transformation behavior is more prominent than the other two loading directions. The loading along 45° direction has the best forming quality, and it can be selected in the processing of Ti-6Al-4V alloy.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06569-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5813-5387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2022, Vol.57 (1), p.651-670 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2618136364 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Analysis Anisotropy Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Corrosion Crystallography and Scattering Methods Deformation Dispersion Fractures Heat resistant alloys High temperature Materials Science Mechanical properties Metal sheets Metals & Corrosion Phase transitions Polymer Sciences Slip Softening Solid Mechanics Specialty metals industry Strain hardening Strain rate Tensile tests Texture Titanium alloys Titanium base alloys |
title | Anisotropic behavior and mechanical properties of Ti-6Al-4V alloy in high temperature deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A12%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20behavior%20and%20mechanical%20properties%20of%20Ti-6Al-4V%20alloy%20in%20high%20temperature%20deformation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Gao,%20Song&rft.date=2022&rft.volume=57&rft.issue=1&rft.spage=651&rft.epage=670&rft.pages=651-670&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06569-8&rft_dat=%3Cgale_proqu%3EA689160336%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618136364&rft_id=info:pmid/&rft_galeid=A689160336&rfr_iscdi=true |