Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage
With the increasing importance of electronic devices in modern industry, considerable efforts have been devoted to solving the problem that the electronic devices fail to work normally in a cold environment. Herein, we designed and fabricated a graphene wrapped wood-based phase change composite with...
Gespeichert in:
Veröffentlicht in: | Cellulose (London) 2022, Vol.29 (1), p.223-232 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 1 |
container_start_page | 223 |
container_title | Cellulose (London) |
container_volume | 29 |
creator | Huang, Wei Li, Hongqiang Lai, Xuejun Chen, Zhonghua Zheng, Longzhu Zhong, Yu Zeng, Xingrong |
description | With the increasing importance of electronic devices in modern industry, considerable efforts have been devoted to solving the problem that the electronic devices fail to work normally in a cold environment. Herein, we designed and fabricated a graphene wrapped wood-based phase change composite with electro-thermal conversion and energy storage capabilities by delignification of natural wood, coverage and reduction of graphene oxide (GO), impregnation of 1-tetradecanol (TD) and package of epoxy resin. The phase change composite exhibited large latent heat of fusion (218.5 J/g), excellent shape stability with high TD packing content of 88.4% and favorable reliability even after 50 heating–cooling cycles. More importantly, the Joule heat conversed by the rGO layer under voltage was able to quickly transfer to the surrounded TD, leading to the increase of the overall temperature of the composite and the efficient storage of energy. The findings conceivably stand out a sustainable strategy to fabricate an electrically driven wood-based phase change composite for preheating and heat preservation of electronics. |
doi_str_mv | 10.1007/s10570-021-04297-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618135776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618135776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3a8fd986c0a146ff52fa644f84d4e899699b1318f9b069f83af36c9cd3e84153</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczR_drPJUYpWoeBFwVtIs5PuljZZk62l395oBW9e5g3MmzfMD6FrRm8Zpc1dZrRuKKGcEVpx3ZD6BE1Y3XCiFH8_RROqpS5joc_RRc5rSqluOJugME926CAA3pdmgBbvY2zJ0ubSDl0R7DobVkXidoi5HwH7mDB437sewohhA25MkYwdpK3d4JKVVodiD5-Qch8DtqHFeYzJruASnXm7yXD1q1P09vjwOnsii5f58-x-QZxgeizVKt9qJR21rJLe19xbWVVeVW0FSpdn9JIJprxeUqm9EtYL6bRrBaiK1WKKbo65Q4ofO8ijWcddCuWk4ZIpJuqmkcXFjy6XYs4JvBlSv7XpYBg131zNkaspXM0PV_MdLY5LuZgLmPQX_c_WF6hYfPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618135776</pqid></control><display><type>article</type><title>Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage</title><source>SpringerLink Journals</source><creator>Huang, Wei ; Li, Hongqiang ; Lai, Xuejun ; Chen, Zhonghua ; Zheng, Longzhu ; Zhong, Yu ; Zeng, Xingrong</creator><creatorcontrib>Huang, Wei ; Li, Hongqiang ; Lai, Xuejun ; Chen, Zhonghua ; Zheng, Longzhu ; Zhong, Yu ; Zeng, Xingrong</creatorcontrib><description>With the increasing importance of electronic devices in modern industry, considerable efforts have been devoted to solving the problem that the electronic devices fail to work normally in a cold environment. Herein, we designed and fabricated a graphene wrapped wood-based phase change composite with electro-thermal conversion and energy storage capabilities by delignification of natural wood, coverage and reduction of graphene oxide (GO), impregnation of 1-tetradecanol (TD) and package of epoxy resin. The phase change composite exhibited large latent heat of fusion (218.5 J/g), excellent shape stability with high TD packing content of 88.4% and favorable reliability even after 50 heating–cooling cycles. More importantly, the Joule heat conversed by the rGO layer under voltage was able to quickly transfer to the surrounded TD, leading to the increase of the overall temperature of the composite and the efficient storage of energy. The findings conceivably stand out a sustainable strategy to fabricate an electrically driven wood-based phase change composite for preheating and heat preservation of electronics.</description><identifier>ISSN: 0969-0239</identifier><identifier>EISSN: 1572-882X</identifier><identifier>DOI: 10.1007/s10570-021-04297-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Bioorganic Chemistry ; Ceramics ; Chemistry ; Chemistry and Materials Science ; Composites ; Electronic devices ; Energy conversion ; Energy storage ; Epoxy resins ; Glass ; Graphene ; Heat of fusion ; Heating ; Latent heat ; Natural Materials ; Organic Chemistry ; Original Research ; Phase change ; Physical Chemistry ; Polymer Sciences ; Sustainable Development ; Thermal energy</subject><ispartof>Cellulose (London), 2022, Vol.29 (1), p.223-232</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3a8fd986c0a146ff52fa644f84d4e899699b1318f9b069f83af36c9cd3e84153</citedby><cites>FETCH-LOGICAL-c319t-c3a8fd986c0a146ff52fa644f84d4e899699b1318f9b069f83af36c9cd3e84153</cites><orcidid>0000-0002-1191-2203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10570-021-04297-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10570-021-04297-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Lai, Xuejun</creatorcontrib><creatorcontrib>Chen, Zhonghua</creatorcontrib><creatorcontrib>Zheng, Longzhu</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Zeng, Xingrong</creatorcontrib><title>Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage</title><title>Cellulose (London)</title><addtitle>Cellulose</addtitle><description>With the increasing importance of electronic devices in modern industry, considerable efforts have been devoted to solving the problem that the electronic devices fail to work normally in a cold environment. Herein, we designed and fabricated a graphene wrapped wood-based phase change composite with electro-thermal conversion and energy storage capabilities by delignification of natural wood, coverage and reduction of graphene oxide (GO), impregnation of 1-tetradecanol (TD) and package of epoxy resin. The phase change composite exhibited large latent heat of fusion (218.5 J/g), excellent shape stability with high TD packing content of 88.4% and favorable reliability even after 50 heating–cooling cycles. More importantly, the Joule heat conversed by the rGO layer under voltage was able to quickly transfer to the surrounded TD, leading to the increase of the overall temperature of the composite and the efficient storage of energy. The findings conceivably stand out a sustainable strategy to fabricate an electrically driven wood-based phase change composite for preheating and heat preservation of electronics.</description><subject>Bioorganic Chemistry</subject><subject>Ceramics</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Electronic devices</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Epoxy resins</subject><subject>Glass</subject><subject>Graphene</subject><subject>Heat of fusion</subject><subject>Heating</subject><subject>Latent heat</subject><subject>Natural Materials</subject><subject>Organic Chemistry</subject><subject>Original Research</subject><subject>Phase change</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Sustainable Development</subject><subject>Thermal energy</subject><issn>0969-0239</issn><issn>1572-882X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczR_drPJUYpWoeBFwVtIs5PuljZZk62l395oBW9e5g3MmzfMD6FrRm8Zpc1dZrRuKKGcEVpx3ZD6BE1Y3XCiFH8_RROqpS5joc_RRc5rSqluOJugME926CAA3pdmgBbvY2zJ0ubSDl0R7DobVkXidoi5HwH7mDB437sewohhA25MkYwdpK3d4JKVVodiD5-Qch8DtqHFeYzJruASnXm7yXD1q1P09vjwOnsii5f58-x-QZxgeizVKt9qJR21rJLe19xbWVVeVW0FSpdn9JIJprxeUqm9EtYL6bRrBaiK1WKKbo65Q4ofO8ijWcddCuWk4ZIpJuqmkcXFjy6XYs4JvBlSv7XpYBg131zNkaspXM0PV_MdLY5LuZgLmPQX_c_WF6hYfPs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Wei</creator><creator>Li, Hongqiang</creator><creator>Lai, Xuejun</creator><creator>Chen, Zhonghua</creator><creator>Zheng, Longzhu</creator><creator>Zhong, Yu</creator><creator>Zeng, Xingrong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1191-2203</orcidid></search><sort><creationdate>2022</creationdate><title>Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage</title><author>Huang, Wei ; Li, Hongqiang ; Lai, Xuejun ; Chen, Zhonghua ; Zheng, Longzhu ; Zhong, Yu ; Zeng, Xingrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3a8fd986c0a146ff52fa644f84d4e899699b1318f9b069f83af36c9cd3e84153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bioorganic Chemistry</topic><topic>Ceramics</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Electronic devices</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Epoxy resins</topic><topic>Glass</topic><topic>Graphene</topic><topic>Heat of fusion</topic><topic>Heating</topic><topic>Latent heat</topic><topic>Natural Materials</topic><topic>Organic Chemistry</topic><topic>Original Research</topic><topic>Phase change</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Sustainable Development</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Hongqiang</creatorcontrib><creatorcontrib>Lai, Xuejun</creatorcontrib><creatorcontrib>Chen, Zhonghua</creatorcontrib><creatorcontrib>Zheng, Longzhu</creatorcontrib><creatorcontrib>Zhong, Yu</creatorcontrib><creatorcontrib>Zeng, Xingrong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Cellulose (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Wei</au><au>Li, Hongqiang</au><au>Lai, Xuejun</au><au>Chen, Zhonghua</au><au>Zheng, Longzhu</au><au>Zhong, Yu</au><au>Zeng, Xingrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage</atitle><jtitle>Cellulose (London)</jtitle><stitle>Cellulose</stitle><date>2022</date><risdate>2022</risdate><volume>29</volume><issue>1</issue><spage>223</spage><epage>232</epage><pages>223-232</pages><issn>0969-0239</issn><eissn>1572-882X</eissn><abstract>With the increasing importance of electronic devices in modern industry, considerable efforts have been devoted to solving the problem that the electronic devices fail to work normally in a cold environment. Herein, we designed and fabricated a graphene wrapped wood-based phase change composite with electro-thermal conversion and energy storage capabilities by delignification of natural wood, coverage and reduction of graphene oxide (GO), impregnation of 1-tetradecanol (TD) and package of epoxy resin. The phase change composite exhibited large latent heat of fusion (218.5 J/g), excellent shape stability with high TD packing content of 88.4% and favorable reliability even after 50 heating–cooling cycles. More importantly, the Joule heat conversed by the rGO layer under voltage was able to quickly transfer to the surrounded TD, leading to the increase of the overall temperature of the composite and the efficient storage of energy. The findings conceivably stand out a sustainable strategy to fabricate an electrically driven wood-based phase change composite for preheating and heat preservation of electronics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10570-021-04297-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1191-2203</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-0239 |
ispartof | Cellulose (London), 2022, Vol.29 (1), p.223-232 |
issn | 0969-0239 1572-882X |
language | eng |
recordid | cdi_proquest_journals_2618135776 |
source | SpringerLink Journals |
subjects | Bioorganic Chemistry Ceramics Chemistry Chemistry and Materials Science Composites Electronic devices Energy conversion Energy storage Epoxy resins Glass Graphene Heat of fusion Heating Latent heat Natural Materials Organic Chemistry Original Research Phase change Physical Chemistry Polymer Sciences Sustainable Development Thermal energy |
title | Graphene wrapped wood-based phase change composite for efficient electro-thermal energy conversion and storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20wrapped%20wood-based%20phase%20change%20composite%20for%20efficient%20electro-thermal%20energy%20conversion%20and%20storage&rft.jtitle=Cellulose%20(London)&rft.au=Huang,%20Wei&rft.date=2022&rft.volume=29&rft.issue=1&rft.spage=223&rft.epage=232&rft.pages=223-232&rft.issn=0969-0239&rft.eissn=1572-882X&rft_id=info:doi/10.1007/s10570-021-04297-5&rft_dat=%3Cproquest_cross%3E2618135776%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618135776&rft_id=info:pmid/&rfr_iscdi=true |