Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries

To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China materials 2022, Vol.65 (1), p.78-84
Hauptverfasser: Wang, Yuetao, Chen, Chuanxi, Ren, Hengyu, Qin, Runzhi, Yi, Haocong, Ding, Shouxiang, Li, Yang, Yao, Lu, Li, Shunning, Zhao, Qinghe, Pan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 78
container_title Science China materials
container_volume 65
creator Wang, Yuetao
Chen, Chuanxi
Ren, Hengyu
Qin, Runzhi
Yi, Haocong
Ding, Shouxiang
Li, Yang
Yao, Lu
Li, Shunning
Zhao, Qinghe
Pan, Feng
description To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H 0.642 V 2 O 5 ·0.143H 2 O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g −1 . Moreover, a synthetic proton and Zn 2+ intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.
doi_str_mv 10.1007/s40843-021-1730-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617803329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617803329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EElXpA7BZYnY5vsYZUQUUqVIHLhKT5SR2SBWSYidDeTF2ngxXQWJiOmf4b_oQuqSwpADZdRSgBSfAKKEZB0JP0IzRPCdCAj1NP-SSaMbUOVrEuAMAqiSluZ6h18dx70LTB1weyrbpahwHWzRtMxxw7_EalkqwF7aV31-pTPA12-Kmw8GVbzbUzhatw_ZjdP0Y8WfTlbiww5ACXbxAZ9620S1-7xw9390-rdZks71_WN1sSMllPhChvPWVsExxYSvlpNVpdAZQeC0qzqHKvNJSSl4oJYqM6syC9YWXlZaVoHyOrqbcfejTkDiYXT-GLlUapmimgXOWJxWdVGXoYwzOm31o3m04GArmCNFMEE2CaI4QzTGZTZ6YtF3twl_y_6YfoStybg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617803329</pqid></control><display><type>article</type><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</creator><creatorcontrib>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</creatorcontrib><description>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H 0.642 V 2 O 5 ·0.143H 2 O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g −1 . Moreover, a synthetic proton and Zn 2+ intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-021-1730-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Batteries ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Cycles ; Hydrothermal reactions ; Intercalation ; Materials Science ; Rechargeable batteries ; Service life ; Structural stability ; Transition metal oxides ; Zinc</subject><ispartof>Science China materials, 2022, Vol.65 (1), p.78-84</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</citedby><cites>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-021-1730-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-021-1730-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Yuetao</creatorcontrib><creatorcontrib>Chen, Chuanxi</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H 0.642 V 2 O 5 ·0.143H 2 O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g −1 . Moreover, a synthetic proton and Zn 2+ intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</description><subject>Batteries</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Cycles</subject><subject>Hydrothermal reactions</subject><subject>Intercalation</subject><subject>Materials Science</subject><subject>Rechargeable batteries</subject><subject>Service life</subject><subject>Structural stability</subject><subject>Transition metal oxides</subject><subject>Zinc</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EElXpA7BZYnY5vsYZUQUUqVIHLhKT5SR2SBWSYidDeTF2ngxXQWJiOmf4b_oQuqSwpADZdRSgBSfAKKEZB0JP0IzRPCdCAj1NP-SSaMbUOVrEuAMAqiSluZ6h18dx70LTB1weyrbpahwHWzRtMxxw7_EalkqwF7aV31-pTPA12-Kmw8GVbzbUzhatw_ZjdP0Y8WfTlbiww5ACXbxAZ9620S1-7xw9390-rdZks71_WN1sSMllPhChvPWVsExxYSvlpNVpdAZQeC0qzqHKvNJSSl4oJYqM6syC9YWXlZaVoHyOrqbcfejTkDiYXT-GLlUapmimgXOWJxWdVGXoYwzOm31o3m04GArmCNFMEE2CaI4QzTGZTZ6YtF3twl_y_6YfoStybg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Yuetao</creator><creator>Chen, Chuanxi</creator><creator>Ren, Hengyu</creator><creator>Qin, Runzhi</creator><creator>Yi, Haocong</creator><creator>Ding, Shouxiang</creator><creator>Li, Yang</creator><creator>Yao, Lu</creator><creator>Li, Shunning</creator><creator>Zhao, Qinghe</creator><creator>Pan, Feng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><author>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Cycles</topic><topic>Hydrothermal reactions</topic><topic>Intercalation</topic><topic>Materials Science</topic><topic>Rechargeable batteries</topic><topic>Service life</topic><topic>Structural stability</topic><topic>Transition metal oxides</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuetao</creatorcontrib><creatorcontrib>Chen, Chuanxi</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuetao</au><au>Chen, Chuanxi</au><au>Ren, Hengyu</au><au>Qin, Runzhi</au><au>Yi, Haocong</au><au>Ding, Shouxiang</au><au>Li, Yang</au><au>Yao, Lu</au><au>Li, Shunning</au><au>Zhao, Qinghe</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>1</issue><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H 0.642 V 2 O 5 ·0.143H 2 O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g −1 . Moreover, a synthetic proton and Zn 2+ intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-021-1730-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-8226
ispartof Science China materials, 2022, Vol.65 (1), p.78-84
issn 2095-8226
2199-4501
language eng
recordid cdi_proquest_journals_2617803329
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Batteries
Chemistry and Materials Science
Chemistry/Food Science
Crystal structure
Cycles
Hydrothermal reactions
Intercalation
Materials Science
Rechargeable batteries
Service life
Structural stability
Transition metal oxides
Zinc
title Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20cycling%20stability%20of%20H0.642V2O5%C2%B70.143H2O%20in%20rechargeable%20aqueous%20zinc%20batteries&rft.jtitle=Science%20China%20materials&rft.au=Wang,%20Yuetao&rft.date=2022&rft.volume=65&rft.issue=1&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-021-1730-1&rft_dat=%3Cproquest_cross%3E2617803329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617803329&rft_id=info:pmid/&rfr_iscdi=true