Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries
To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V 2 O5 by pre-intercalating H + and H 2 O pillars using a facile hydro...
Gespeichert in:
Veröffentlicht in: | Science China materials 2022, Vol.65 (1), p.78-84 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 78 |
container_title | Science China materials |
container_volume | 65 |
creator | Wang, Yuetao Chen, Chuanxi Ren, Hengyu Qin, Runzhi Yi, Haocong Ding, Shouxiang Li, Yang Yao, Lu Li, Shunning Zhao, Qinghe Pan, Feng |
description | To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V
2
O5 by pre-intercalating H
+
and H
2
O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H
0.642
V
2
O
5
·0.143H
2
O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g
−1
. Moreover, a synthetic proton and Zn
2+
intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials. |
doi_str_mv | 10.1007/s40843-021-1730-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617803329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617803329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EElXpA7BZYnY5vsYZUQUUqVIHLhKT5SR2SBWSYidDeTF2ngxXQWJiOmf4b_oQuqSwpADZdRSgBSfAKKEZB0JP0IzRPCdCAj1NP-SSaMbUOVrEuAMAqiSluZ6h18dx70LTB1weyrbpahwHWzRtMxxw7_EalkqwF7aV31-pTPA12-Kmw8GVbzbUzhatw_ZjdP0Y8WfTlbiww5ACXbxAZ9620S1-7xw9390-rdZks71_WN1sSMllPhChvPWVsExxYSvlpNVpdAZQeC0qzqHKvNJSSl4oJYqM6syC9YWXlZaVoHyOrqbcfejTkDiYXT-GLlUapmimgXOWJxWdVGXoYwzOm31o3m04GArmCNFMEE2CaI4QzTGZTZ6YtF3twl_y_6YfoStybg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617803329</pqid></control><display><type>article</type><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</creator><creatorcontrib>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</creatorcontrib><description>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V
2
O5 by pre-intercalating H
+
and H
2
O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H
0.642
V
2
O
5
·0.143H
2
O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g
−1
. Moreover, a synthetic proton and Zn
2+
intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</description><identifier>ISSN: 2095-8226</identifier><identifier>EISSN: 2199-4501</identifier><identifier>DOI: 10.1007/s40843-021-1730-1</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Batteries ; Chemistry and Materials Science ; Chemistry/Food Science ; Crystal structure ; Cycles ; Hydrothermal reactions ; Intercalation ; Materials Science ; Rechargeable batteries ; Service life ; Structural stability ; Transition metal oxides ; Zinc</subject><ispartof>Science China materials, 2022, Vol.65 (1), p.78-84</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</citedby><cites>FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40843-021-1730-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40843-021-1730-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Yuetao</creatorcontrib><creatorcontrib>Chen, Chuanxi</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><title>Science China materials</title><addtitle>Sci. China Mater</addtitle><description>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V
2
O5 by pre-intercalating H
+
and H
2
O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H
0.642
V
2
O
5
·0.143H
2
O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g
−1
. Moreover, a synthetic proton and Zn
2+
intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</description><subject>Batteries</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Crystal structure</subject><subject>Cycles</subject><subject>Hydrothermal reactions</subject><subject>Intercalation</subject><subject>Materials Science</subject><subject>Rechargeable batteries</subject><subject>Service life</subject><subject>Structural stability</subject><subject>Transition metal oxides</subject><subject>Zinc</subject><issn>2095-8226</issn><issn>2199-4501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EElXpA7BZYnY5vsYZUQUUqVIHLhKT5SR2SBWSYidDeTF2ngxXQWJiOmf4b_oQuqSwpADZdRSgBSfAKKEZB0JP0IzRPCdCAj1NP-SSaMbUOVrEuAMAqiSluZ6h18dx70LTB1weyrbpahwHWzRtMxxw7_EalkqwF7aV31-pTPA12-Kmw8GVbzbUzhatw_ZjdP0Y8WfTlbiww5ACXbxAZ9620S1-7xw9390-rdZks71_WN1sSMllPhChvPWVsExxYSvlpNVpdAZQeC0qzqHKvNJSSl4oJYqM6syC9YWXlZaVoHyOrqbcfejTkDiYXT-GLlUapmimgXOWJxWdVGXoYwzOm31o3m04GArmCNFMEE2CaI4QzTGZTZ6YtF3twl_y_6YfoStybg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wang, Yuetao</creator><creator>Chen, Chuanxi</creator><creator>Ren, Hengyu</creator><creator>Qin, Runzhi</creator><creator>Yi, Haocong</creator><creator>Ding, Shouxiang</creator><creator>Li, Yang</creator><creator>Yao, Lu</creator><creator>Li, Shunning</creator><creator>Zhao, Qinghe</creator><creator>Pan, Feng</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</title><author>Wang, Yuetao ; Chen, Chuanxi ; Ren, Hengyu ; Qin, Runzhi ; Yi, Haocong ; Ding, Shouxiang ; Li, Yang ; Yao, Lu ; Li, Shunning ; Zhao, Qinghe ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-46fafd4a2634ad6e5a8501700bf84d330d7f685553b664b7187a0afbf5d85d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Crystal structure</topic><topic>Cycles</topic><topic>Hydrothermal reactions</topic><topic>Intercalation</topic><topic>Materials Science</topic><topic>Rechargeable batteries</topic><topic>Service life</topic><topic>Structural stability</topic><topic>Transition metal oxides</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuetao</creatorcontrib><creatorcontrib>Chen, Chuanxi</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Qin, Runzhi</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Ding, Shouxiang</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Yao, Lu</creatorcontrib><creatorcontrib>Li, Shunning</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Science China materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuetao</au><au>Chen, Chuanxi</au><au>Ren, Hengyu</au><au>Qin, Runzhi</au><au>Yi, Haocong</au><au>Ding, Shouxiang</au><au>Li, Yang</au><au>Yao, Lu</au><au>Li, Shunning</au><au>Zhao, Qinghe</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries</atitle><jtitle>Science China materials</jtitle><stitle>Sci. China Mater</stitle><date>2022</date><risdate>2022</risdate><volume>65</volume><issue>1</issue><spage>78</spage><epage>84</epage><pages>78-84</pages><issn>2095-8226</issn><eissn>2199-4501</eissn><abstract>To increase the service life of rechargeable batteries, transition metal oxide hosts with high structural stability for the intercalation of carrier ions are important. Herein, we reconstruct the crystal structure of a commercial V
2
O5 by pre-intercalating H
+
and H
2
O pillars using a facile hydrothermal reaction and obtain a bi-layer structured H
0.642
V
2
O
5
·0.143H
2
O (HVO) as an excellent host for aqueous Zn-ion batteries. Benefiting from the structural reconstruction, the irreversible “layer-to-amorphous” phase evolution during cycling is considerably less, resulting in ultra-high cycling stability of HVO with nearly no capacity fading even after 500 cycles at a current density of 0.5 A g
−1
. Moreover, a synthetic proton and Zn
2+
intercalation mechanism in the HVO host is demonstrated. This work provides both a facile synthesis method for the preparation of V-based compounds and a new viewpoint for achieving high-performance host materials.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s40843-021-1730-1</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-8226 |
ispartof | Science China materials, 2022, Vol.65 (1), p.78-84 |
issn | 2095-8226 2199-4501 |
language | eng |
recordid | cdi_proquest_journals_2617803329 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Batteries Chemistry and Materials Science Chemistry/Food Science Crystal structure Cycles Hydrothermal reactions Intercalation Materials Science Rechargeable batteries Service life Structural stability Transition metal oxides Zinc |
title | Superior cycling stability of H0.642V2O5·0.143H2O in rechargeable aqueous zinc batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20cycling%20stability%20of%20H0.642V2O5%C2%B70.143H2O%20in%20rechargeable%20aqueous%20zinc%20batteries&rft.jtitle=Science%20China%20materials&rft.au=Wang,%20Yuetao&rft.date=2022&rft.volume=65&rft.issue=1&rft.spage=78&rft.epage=84&rft.pages=78-84&rft.issn=2095-8226&rft.eissn=2199-4501&rft_id=info:doi/10.1007/s40843-021-1730-1&rft_dat=%3Cproquest_cross%3E2617803329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617803329&rft_id=info:pmid/&rfr_iscdi=true |