Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment
In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, wate...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2022-01, Vol.43 (1), p.21-35 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Polymer composites |
container_volume | 43 |
creator | Kamaludin, Nor Helya Iman Ismail, Hanafi Rusli, Arjulizan Sam, Sung Ting |
description | In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties. |
doi_str_mv | 10.1002/pc.26354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617686125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617686125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDxCJBaWlNhJ7GREFV9SJTrAbNmXM3WV2sF2hbrxCDwjT0KgMDLdcL_7n-4IOafFjBYFuxpgxnhZVwdkQuuqyYuat4dkUjDB8qZsxTE5iXE9Ssp5OSG4DH7AkCzGDN1KOcANupR5k8HKJh-V-3z_MLbvscsG3-96BclCpsB2mbYe_Gbw0aZxfBute8mScu6vnwKq9B13So6M6iOe_dYpeb69eZrf54vHu4f59SIH1pZVXqFptWZCUdGONwiqgJpKtxSgbLpWM97UUDSiMcgrwRjvaIfcKM2pNkZDOSUX-9wh-NctxiTXfhvcuFIyTgVvOGX1qC73CoKPMaCRQ7AbFXaSFvL7iXIA-fPEkeZ7-mZ73P3r5HK-91_pS3VV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617686125</pqid></control><display><type>article</type><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><source>Access via Wiley Online Library</source><creator>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</creator><creatorcontrib>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</creatorcontrib><description>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.26354</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Addition polymerization ; Biomedical materials ; Blending effects ; chemical modification ; Chitosan ; Composite materials ; Crystallization ; Elongation ; Fourier transforms ; Infrared analysis ; Melt blending ; Morphology ; Polylactic acid ; Polymers ; Pressure molding ; Tannic acid ; Tensile strength ; Thermal stability ; Water absorption</subject><ispartof>Polymer composites, 2022-01, Vol.43 (1), p.21-35</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>2022 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</citedby><cites>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</cites><orcidid>0000-0003-2916-0799 ; 0000-0002-7736-3606 ; 0000-0003-3474-5265 ; 0000-0001-9269-3972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.26354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.26354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kamaludin, Nor Helya Iman</creatorcontrib><creatorcontrib>Ismail, Hanafi</creatorcontrib><creatorcontrib>Rusli, Arjulizan</creatorcontrib><creatorcontrib>Sam, Sung Ting</creatorcontrib><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><title>Polymer composites</title><description>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</description><subject>Addition polymerization</subject><subject>Biomedical materials</subject><subject>Blending effects</subject><subject>chemical modification</subject><subject>Chitosan</subject><subject>Composite materials</subject><subject>Crystallization</subject><subject>Elongation</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Melt blending</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Pressure molding</subject><subject>Tannic acid</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Water absorption</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDxCJBaWlNhJ7GREFV9SJTrAbNmXM3WV2sF2hbrxCDwjT0KgMDLdcL_7n-4IOafFjBYFuxpgxnhZVwdkQuuqyYuat4dkUjDB8qZsxTE5iXE9Ssp5OSG4DH7AkCzGDN1KOcANupR5k8HKJh-V-3z_MLbvscsG3-96BclCpsB2mbYe_Gbw0aZxfBute8mScu6vnwKq9B13So6M6iOe_dYpeb69eZrf54vHu4f59SIH1pZVXqFptWZCUdGONwiqgJpKtxSgbLpWM97UUDSiMcgrwRjvaIfcKM2pNkZDOSUX-9wh-NctxiTXfhvcuFIyTgVvOGX1qC73CoKPMaCRQ7AbFXaSFvL7iXIA-fPEkeZ7-mZ73P3r5HK-91_pS3VV</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kamaludin, Nor Helya Iman</creator><creator>Ismail, Hanafi</creator><creator>Rusli, Arjulizan</creator><creator>Sam, Sung Ting</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2916-0799</orcidid><orcidid>https://orcid.org/0000-0002-7736-3606</orcidid><orcidid>https://orcid.org/0000-0003-3474-5265</orcidid><orcidid>https://orcid.org/0000-0001-9269-3972</orcidid></search><sort><creationdate>202201</creationdate><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><author>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Biomedical materials</topic><topic>Blending effects</topic><topic>chemical modification</topic><topic>Chitosan</topic><topic>Composite materials</topic><topic>Crystallization</topic><topic>Elongation</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Melt blending</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Pressure molding</topic><topic>Tannic acid</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamaludin, Nor Helya Iman</creatorcontrib><creatorcontrib>Ismail, Hanafi</creatorcontrib><creatorcontrib>Rusli, Arjulizan</creatorcontrib><creatorcontrib>Sam, Sung Ting</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamaludin, Nor Helya Iman</au><au>Ismail, Hanafi</au><au>Rusli, Arjulizan</au><au>Sam, Sung Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</atitle><jtitle>Polymer composites</jtitle><date>2022-01</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>21</spage><epage>35</epage><pages>21-35</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.26354</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2916-0799</orcidid><orcidid>https://orcid.org/0000-0002-7736-3606</orcidid><orcidid>https://orcid.org/0000-0003-3474-5265</orcidid><orcidid>https://orcid.org/0000-0001-9269-3972</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2022-01, Vol.43 (1), p.21-35 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_2617686125 |
source | Access via Wiley Online Library |
subjects | Addition polymerization Biomedical materials Blending effects chemical modification Chitosan Composite materials Crystallization Elongation Fourier transforms Infrared analysis Melt blending Morphology Polylactic acid Polymers Pressure molding Tannic acid Tensile strength Thermal stability Water absorption |
title | Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20enhancement%20of%20chitosan%E2%80%90filled%20polylactic%20acid%20biocomposites%20using%20tannic%20acid%20treatment&rft.jtitle=Polymer%20composites&rft.au=Kamaludin,%20Nor%20Helya%20Iman&rft.date=2022-01&rft.volume=43&rft.issue=1&rft.spage=21&rft.epage=35&rft.pages=21-35&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.26354&rft_dat=%3Cproquest_cross%3E2617686125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617686125&rft_id=info:pmid/&rfr_iscdi=true |