Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment

In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, wate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2022-01, Vol.43 (1), p.21-35
Hauptverfasser: Kamaludin, Nor Helya Iman, Ismail, Hanafi, Rusli, Arjulizan, Sam, Sung Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 1
container_start_page 21
container_title Polymer composites
container_volume 43
creator Kamaludin, Nor Helya Iman
Ismail, Hanafi
Rusli, Arjulizan
Sam, Sung Ting
description In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.
doi_str_mv 10.1002/pc.26354
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617686125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617686125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</originalsourceid><addsrcrecordid>eNp10L1OwzAQB3ALgUQpSDxCJBaWlNhJ7GREFV9SJTrAbNmXM3WV2sF2hbrxCDwjT0KgMDLdcL_7n-4IOafFjBYFuxpgxnhZVwdkQuuqyYuat4dkUjDB8qZsxTE5iXE9Ssp5OSG4DH7AkCzGDN1KOcANupR5k8HKJh-V-3z_MLbvscsG3-96BclCpsB2mbYe_Gbw0aZxfBute8mScu6vnwKq9B13So6M6iOe_dYpeb69eZrf54vHu4f59SIH1pZVXqFptWZCUdGONwiqgJpKtxSgbLpWM97UUDSiMcgrwRjvaIfcKM2pNkZDOSUX-9wh-NctxiTXfhvcuFIyTgVvOGX1qC73CoKPMaCRQ7AbFXaSFvL7iXIA-fPEkeZ7-mZ73P3r5HK-91_pS3VV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617686125</pqid></control><display><type>article</type><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><source>Access via Wiley Online Library</source><creator>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</creator><creatorcontrib>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</creatorcontrib><description>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.26354</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Addition polymerization ; Biomedical materials ; Blending effects ; chemical modification ; Chitosan ; Composite materials ; Crystallization ; Elongation ; Fourier transforms ; Infrared analysis ; Melt blending ; Morphology ; Polylactic acid ; Polymers ; Pressure molding ; Tannic acid ; Tensile strength ; Thermal stability ; Water absorption</subject><ispartof>Polymer composites, 2022-01, Vol.43 (1), p.21-35</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>2022 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</citedby><cites>FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</cites><orcidid>0000-0003-2916-0799 ; 0000-0002-7736-3606 ; 0000-0003-3474-5265 ; 0000-0001-9269-3972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.26354$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.26354$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kamaludin, Nor Helya Iman</creatorcontrib><creatorcontrib>Ismail, Hanafi</creatorcontrib><creatorcontrib>Rusli, Arjulizan</creatorcontrib><creatorcontrib>Sam, Sung Ting</creatorcontrib><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><title>Polymer composites</title><description>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</description><subject>Addition polymerization</subject><subject>Biomedical materials</subject><subject>Blending effects</subject><subject>chemical modification</subject><subject>Chitosan</subject><subject>Composite materials</subject><subject>Crystallization</subject><subject>Elongation</subject><subject>Fourier transforms</subject><subject>Infrared analysis</subject><subject>Melt blending</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Pressure molding</subject><subject>Tannic acid</subject><subject>Tensile strength</subject><subject>Thermal stability</subject><subject>Water absorption</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAQB3ALgUQpSDxCJBaWlNhJ7GREFV9SJTrAbNmXM3WV2sF2hbrxCDwjT0KgMDLdcL_7n-4IOafFjBYFuxpgxnhZVwdkQuuqyYuat4dkUjDB8qZsxTE5iXE9Ssp5OSG4DH7AkCzGDN1KOcANupR5k8HKJh-V-3z_MLbvscsG3-96BclCpsB2mbYe_Gbw0aZxfBute8mScu6vnwKq9B13So6M6iOe_dYpeb69eZrf54vHu4f59SIH1pZVXqFptWZCUdGONwiqgJpKtxSgbLpWM97UUDSiMcgrwRjvaIfcKM2pNkZDOSUX-9wh-NctxiTXfhvcuFIyTgVvOGX1qC73CoKPMaCRQ7AbFXaSFvL7iXIA-fPEkeZ7-mZ73P3r5HK-91_pS3VV</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kamaludin, Nor Helya Iman</creator><creator>Ismail, Hanafi</creator><creator>Rusli, Arjulizan</creator><creator>Sam, Sung Ting</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2916-0799</orcidid><orcidid>https://orcid.org/0000-0002-7736-3606</orcidid><orcidid>https://orcid.org/0000-0003-3474-5265</orcidid><orcidid>https://orcid.org/0000-0001-9269-3972</orcidid></search><sort><creationdate>202201</creationdate><title>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</title><author>Kamaludin, Nor Helya Iman ; Ismail, Hanafi ; Rusli, Arjulizan ; Sam, Sung Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-4ef9bb27a17963571ac1f4b91cc38d9b2685c0878fe647226d1de6fab61bffbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Biomedical materials</topic><topic>Blending effects</topic><topic>chemical modification</topic><topic>Chitosan</topic><topic>Composite materials</topic><topic>Crystallization</topic><topic>Elongation</topic><topic>Fourier transforms</topic><topic>Infrared analysis</topic><topic>Melt blending</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Pressure molding</topic><topic>Tannic acid</topic><topic>Tensile strength</topic><topic>Thermal stability</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamaludin, Nor Helya Iman</creatorcontrib><creatorcontrib>Ismail, Hanafi</creatorcontrib><creatorcontrib>Rusli, Arjulizan</creatorcontrib><creatorcontrib>Sam, Sung Ting</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamaludin, Nor Helya Iman</au><au>Ismail, Hanafi</au><au>Rusli, Arjulizan</au><au>Sam, Sung Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment</atitle><jtitle>Polymer composites</jtitle><date>2022-01</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>21</spage><epage>35</epage><pages>21-35</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>In this study, tannic acid‐treated chitosan (Cs‐TA)‐filled polylactic acid (PLA) biocomposites were fabricated through the melt blending and compression molding methods. The effects of Cs‐TA and their loadings (2.5, 5, 7.5, and 10) php on chemical interaction, tensile, melt processing, thermal, water absorption, and morphological characteristics were analyzed accordingly, and compared with a previously untreated PLA/Cs biocomposite. Fourier transform infrared spectroscopy analysis revealed that TA could form a cross‐linked network with Cs components as well as improving the hydrophilicity character of Cs for better interaction with PLA polymer. In addition, tensile strength and elongation at break were enhanced to the extent of ~3% and ~11%, respectively, at optimal 3% w/v TA concentration and 2.5 php Cs loading. Melt processing analysis of treated PLA/Cs‐TA demonstrated a lower stabilization torque, which implied improvement in the PLA processability. Moreover, chemical modification of Cs with TA showed a positive effect on thermal stability correlated to a higher decomposition temperature. Meanwhile, the crystallinity degree was considerably increased with TA treatment ascribed to the acceleration in crystallization process. Besides, a lower water uptake percentage proposed the Cs‐TA potential in controlling water uptake in PLA/Cs biocomposite. Indeed, the morphological analysis exhibited better filler dispersion and interfacial adhesion between Cs‐TA and PLA polymer, which justified the enhancement in all studied properties.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.26354</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2916-0799</orcidid><orcidid>https://orcid.org/0000-0002-7736-3606</orcidid><orcidid>https://orcid.org/0000-0003-3474-5265</orcidid><orcidid>https://orcid.org/0000-0001-9269-3972</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2022-01, Vol.43 (1), p.21-35
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2617686125
source Access via Wiley Online Library
subjects Addition polymerization
Biomedical materials
Blending effects
chemical modification
Chitosan
Composite materials
Crystallization
Elongation
Fourier transforms
Infrared analysis
Melt blending
Morphology
Polylactic acid
Polymers
Pressure molding
Tannic acid
Tensile strength
Thermal stability
Water absorption
title Properties enhancement of chitosan‐filled polylactic acid biocomposites using tannic acid treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20enhancement%20of%20chitosan%E2%80%90filled%20polylactic%20acid%20biocomposites%20using%20tannic%20acid%20treatment&rft.jtitle=Polymer%20composites&rft.au=Kamaludin,%20Nor%20Helya%20Iman&rft.date=2022-01&rft.volume=43&rft.issue=1&rft.spage=21&rft.epage=35&rft.pages=21-35&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.26354&rft_dat=%3Cproquest_cross%3E2617686125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2617686125&rft_id=info:pmid/&rfr_iscdi=true